

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

HIGH-PERFORMANCE PACKING AND

SEARCHING FOR BLOCKCHAIN-BASED

BIG DATA SHARING

SHAN JIANG

PhD

The Hong Kong Polytechnic University

2021

The Hong Kong Polytechnic University

Department of Computing

High-performance Packing and Searching for

Blockchain-based Big Data Sharing

Shan Jiang

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

January 2021

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgement has been

made in the text.

(Signed)

Shan Jiang (Name of Student)

Abstract

Big data has been showing its great value in revolutionizing various industries. Gen-

erally, the big data possessed by different stakeholders forms isolated data islands,

which limits their values because data cooperation can make the total value greater

than the mere sum of the parts. Big data sharing is the key for the transition from

data islands to data ecosystems and maximizing the value of big data. Recently,

blockchain technology has been attracting intensive attention from both the indus-

tries and academic. Because of the prominent features of transparency, decentraliza-

tion, and immutability, blockchain is considered as a promising solution for big data

sharing. In this thesis, we study blockchain-big data sharing in terms of the basic

concepts, challenging issues, and high-performance solutions.

In particular, we conduct a comprehensive survey of big data sharing and present

the system architecture and layered research framework of blockchain-based big data

sharing. Inside the research framework, we tackle several challenges, ranging from

transaction fairness, privacy preservation during data search, and anonymity of the

data users, in blockchain-based big data sharing by proposing high-performance so-

lutions. The algorithms and mechanisms are evaluated in various applications such

as IoT data management and e-voting. The experimental results have indicated the

high performance of our solutions. We believe this thesis can serve as a solid step

towards real-world applications of blockchain-based big data sharing.

i

Publications Arising from the

Thesis

1. Shan Jiang, Jiannong Cao, Hanqing Wu, Yanni Yang, “Fairness-based Packing

of Industrial IoT Data in Permissioned Blockchains”, in IEEE Transactions on

Industrial Informatics (2020).

2. Shan Jiang, Jiannong Cao, Juncen Zhu, Yinfeng Cao, “PolyChain: a Generic

Blockchain as a Service Platform”, accepted by Springer BlockSys 2021.

3. Shan Jiang, Jiannong Cao, Julie A. McCann, Yanni Yang, Yang Liu, Xiaoqing

Wang, Yuming Deng, “Privacy-preserving and Efficient Multi-keyword Search

Over Encrypted Data on Blockchain”, in IEEE Blockchain 2019 (Oral Presentation).

4. Shan Jiang, Jiannong Cao, Hanqing Wu, Yanni Yang, Mingyu Ma, Jianfei

He, “BlocHIE: a BLOCkchain-based platform for Healthcare Information Ex-

change”, in IEEE SMARTCOMP 2018.

5. Shan Jiang, Junbin Liang, Jiannong Cao, Jia Wang, Jinlin Chen, and Zhixuan

Liang, “Decentralized Algorithm for Repeating Pattern Formation by Multiple

Robots”, in IEEE ICPADS 2019 (Oral Presentation).

6. Shan Jiang, Jiannong Cao, Jia Wang, Milos Stojmenovic, Julien Bourgeois,

“Uniform Circle Formation by Asynchronous Robots: A Fully-Distributed Ap-

proach”, in IEEE ICCCN 2017 (Oral Presentation).

ii

7. Shan Jiang, Jiannong Cao, Yang Liu, Jinlin Chen, Xuefeng Liu, “Programming

Large-Scale Multi-Robot System with Timing Constraints”, in IEEE ICCCN

2016 (Oral Presentation).

8. Shan Jiang, Junbin Liang, Jiannong Cao, Rui Liu, “An ensemble-level program-

ming model with real-time support for multi-robot systems”, in IEEE PerCom

Workshops 2016 (Demo).

9. Xiulong Liu, Jiuwu Zhang, Shan Jiang, Yanni Yang, Keqiu Li, Jiannong Cao,

Jiangchuan Liu, “Accurate Localization of Tagged Objects Using Mobile RFID-

augmented Robots”, in IEEE Transactions on Mobile Computing (2019).

10. Yuvraj Sahni, Jiannong Cao, Shan Jiang, “Middleware for Multi-Robot Sys-

tem”, a book chapter in Mission-Oriented Sensor Networks and Systems: Art

and Science, Springer (2019).

11. Hanqing Wu, Jiannong Cao, Yanni Yang, Cheung Leong Tung, Shan Jiang, Bin

Tang, Yang Liu, Xiaoqing Wang, Yuming Deng, “Data Management in Supply

Chain Using Blockchain: Challenges and a Case Study”, in IEEE ICCCN 2019.

12. Jia Wang, Jiannong Cao, Milos Stojmenovic, Miao Zhao, Jinlin Chen, Shan Jiang,

“Pattern-RL: Multi-robot Cooperative Pattern Formation via Deep Reinforce-

ment Learning”, in IEEE ICMLA 2019.

13. Xiulong Liu, Jiannong Cao, Yanni Yang, Shan Jiang, “CPS-Based Smart Ware-

house for Industry 4.0: A Survey of the Underlying Technologies”, in Computers

(2018).

14. Hanqing Wu, Jiannong Cao, Shan Jiang, Ruosong Yang, Yanni Yang, Jianfei

He, “TSAR: a fully-distributed Trustless data ShARing platform”, in IEEE

SMARTCOMP 2018 (Workshop).

15. Jia Wang, Jiannong Cao, Shan Jiang, “Fault-Tolerant Pattern Formation by

Multiple Robots: A Learning Approach”, in IEEE SRDS 2017 (Ph.D. Forum).

iii

Acknowledgments

When the time elapsed slowly in The Hong Kong Polytechnic University (PolyU),

the twenty-six-year-old me stands right here and watch the way behind. My eyes are

occupied with the twenty-year-old me. At that time, I just entered Hong Kong as a

little boy, and now, I am a husband and very likely to be a father in the near future.

During the six-year RA and Ph.D. life, I have learned a lot and become stronger. My

research is focused on algorithms for distributed systems such as multi-robot system,

blockchain, and RFID. I believe such a experience will never fade in my memory.

Besides the hard work, I do not think I can be capable of reaching this milestone of

my study without the assistance and supports from my supervisor, family, friends,

and colleague.

First and foremost, I would like to express my sincere thanks to my supervisor,

Prof. Jiannong Cao, for his guidance and advice in both my research and life.

During my Ph.D. study, my research direction has shifted from multi-robot systems

[75][81][77][82][161][107][112][162][140] to blockchain [79][76][78][80][171][172], but they

are all about algorithms for distributed systems. It was he that encouraged me to

continue the Ph.D. study in the toughest time. It was he that taught me of the skills

necessary for researchers, e.g., listening, reading, writing, presenting, and teaching.

It was he that let me know the high-quality and high-impact research. I believe his

guidance and advice will accompany me and continue to benefit the rest of my life.

Besides, It is my honor to spend years with students and staffs in Internet and Mobile

iv

Computing Laboratory and Department of Computing, PolyU. They are more like

my family members rather than colleagues. I would like to express my thanks to Dr.

Junbin Liang, Dr. Xuefeng Liang, and Dr. Milos Stojmenovic for their guidance in

the past. It was they that guided me when I knew nearly nothing about research.

Meanwhile, Christy, Carmen, Jolie, Anna, and Esther have helped me a lot for the

complicated administrative tasks. My special thanks go to my friends, e.g., Dr.

Xiulong Liu, Mr. Yu Yang, Ms. Yanni Yang, Ms. Juncen Zhu, Dr. Jiaxing Shen,

Mr. Ruosong Yang, Mr. Yang Liu, Mr. Hanqing Wu, Dr. Wengen Li, Mr. Zhiyuan

Wen, Mr. Zhuo Li, Ms. Jia Wang, Dr. Fuliang Li, Dr. Lei Yang, Mr. Zhixuan Liang,

Mr. Jinlin Chen, Mr. Mingjin Zhang, Mr. Qianyi Chen, Dr. Yanwen Wang, and Ms.

Jiating Zhu. Sometimes we get together and sometimes separate, but I really cherish

and will never forget the time with them when hiking, eating, drinking, studying,

playing, and so on.

Last but not least, I would like to thank my family and friends, e.g., Ms. Shuang

Chen, Mr. Zaodao Jiang, Ms. Aiqin Cheng, Dr. Shiyan Jiang, Mr. Hao Cheng,

Dr. Haofeng Li, Mr. Qiaotian Lu, Mr. Zhengjie Huang, and Ms. Bing Zhao. It

does not matter they know my research or not, but their understanding, support,

accomplishment, and love were the power to relieve my mental burden. Without

them, I am a lesser man.

v

Table of Contents

Abstract i

Publications Arising from the Thesis ii

Acknowledgments iv

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Background & Motivation . 1

1.2 System Architecture . 5

1.3 Research Framework . 7

1.4 Thesis Organization . 9

2 Big Data Sharing: a Comprehensive Survey 12

2.1 Basics of Big Data Sharing . 14

2.1.1 Introduction to Big Data . 14

vi

2.1.2 Definition of Big Data Sharing 16

2.1.3 General Procedures of Big Data Sharing 18

2.1.4 Benefits of Big Data Sharing 19

2.1.5 Requirements of Big Data Sharing Solutions 22

2.2 Existing Platforms and Categorization 26

2.2.1 Existing Platforms . 26

2.2.2 Categorization of Existing Platforms 33

2.3 Challenges and Potential Solutions 37

2.3.1 Standardization of Heterogeneous Data 37

2.3.2 Value Assessment and Pricing Model 39

2.3.3 Security . 42

2.3.4 Privacy . 46

2.3.5 Data Traceability and Accountability 51

2.3.6 High Quality of Service . 54

2.4 Promising Applications . 55

2.4.1 Big Data Sharing for Healthcare 57

2.4.2 Big Data Trading . 58

2.5 Chapter Summary . 59

3 Fairness-based Transaction Packing 61

3.1 System Model and Problem Statement 64

3.2 Fair-Pack: a Fairness-based Transaction Packing Algorithm 68

vii

3.3 Sum-Index: a Heuristic Solution to SM-Sum 72

3.4 Min-Heap-Op: an Optimal Solution to LM-Sum 77

3.5 Time Complexity Analysis . 83

3.6 Performance Evaluation . 85

3.6.1 Influence of Transaction Incoming Rate 86

3.6.2 Influence of Block Generation Time 89

3.6.3 Influence of Block Size . 90

3.6.4 Influence of Block Validity Ratio 90

3.7 Related Work . 91

3.8 Chapter Summary . 92

4 Multi-keyword Search 94

4.1 Privacy-preserving and Efficient Data Management via Blockchain . . 97

4.1.1 System Overview . 97

4.1.2 Database Setup . 99

4.1.3 Dynamic Update . 103

4.1.4 Multi-keyword Search . 106

4.2 Experimental Result . 111

4.2.1 Setup and Update . 112

4.2.2 Single-keyword Search . 113

4.2.3 Multi-keyword Search . 114

4.3 Related Work . 116

viii

4.4 Chapter Summary . 116

5 Dynamic Ring Signature 118

5.1 System Architecture . 120

5.2 Provable Anonymity via Dynamic Ring Signature 123

5.2.1 Introduction to Ring Signature 123

5.2.2 Example & Terminologies . 124

5.2.3 Anonymity Validation . 126

5.2.4 Mixin Selection . 134

5.3 Analysis & Experiments . 138

5.3.1 Time Complexity Analysis . 138

5.3.2 Number of Compromised Voters v.s. Number of Mixins for

Traditional Approaches . 139

5.3.3 Number of Mixins for Dynamic Ring Signature 141

5.3.4 Time Consumption for Dynamic Ring Signature 143

5.3.5 Concurrent Ballot Submission 145

5.4 Related Work . 146

5.4.1 E-voting systems . 146

5.4.2 Linkable Ring Signature . 147

5.5 Chapter Summary . 147

6 Conclusion and Future Directions 149

References 151

ix

List of Figures

1.1 Motivation of blockchain for big data sharing 2

1.2 Distinctive features of blockchain . 3

1.3 Structure of a traditional blockchain 4

1.4 The procedure for committing transactions 5

1.5 System architecture of blockchain-based big data sharing 6

1.6 Research framework of blockchain-based big data sharing 7

2.1 Survey structure . 13

2.2 Primary characteristics of big data 15

2.3 Benefits of big data sharing . 20

2.4 Display of big data on Epimorphics LDP 27

2.5 ISA model . 30

2.6 The workflow of IPFS . 31

2.7 The workflow of data hosting center 34

2.8 The workflow of data aggregation center 36

2.9 Big data sharing for healthcare . 58

x

3.1 Block generation of permissioned blockchains 65

3.2 Subsets of size p listed level by level according to index sum 73

3.3 (a) H(4) and (b) WH(4) . 80

3.4 Protocol buffers of the blockchain prototype 85

3.5 Experimental result . 87

4.1 System overview . 98

4.2 Distribution of keyword appearance 111

4.3 Single-keyword search . 114

4.4 Time evaluation for multi-keyword search 115

5.1 System architecture . 121

5.2 Example construct graphs (b1 = ({v1, v2}, c1), b2 = ({v1, v3}, c2), b3 =

({v2, v3}, c1)) . 129

5.3 Example ballot assignments and maximum flow solutions for {b1 =

({v1, v2}, c1), b2 = ({v1, v3}, c2), b3 = ({v2, v3}, c1)} 132

5.4 Number of compromised voters v.s. number of ballots and mixins . . 140

5.5 Number of compromised voters v.s. number of candidates and mixins 141

5.6 Number of mixins per ballot v.s. number of ballots and candidates . . 142

5.7 Histogram of number of mixin . 142

5.8 Time consumption per ballot v.s. number of ballots and candidates . 144

5.9 Histogram of time consumption . 144

5.10 Average number of mixins and time consumption per ballot v.s. num-

ber of concurrent ballots . 145

xi

List of Tables

2.1 Comparison among big data sharing, data sharing, data exchange, and

big data trading . 17

2.2 Categorization of healthcare big data 56

4.1 With v.s. Without Support of Multi-keyword Search 113

xii

Chapter 1

Introduction

1.1 Background & Motivation

In recent years, the development of Internet of Things (IoT), social media, etc. has

brought an increasing amount of data generated, collected, and processed everyday.

The high-volume, high-velocity, and high-diversity data is generally the so-called big

data. Big data is indeed a revolution of the information technology with tangible

benefits of cost reduction, efficiency improvement, and intelligent decision making in

industries, commerce, and social good. For example, 35% of Amazon.com’s revenue

is generated by its big data-driven recommendation engine.

Generally speaking, the data owners, e.g., enterprises and hospitals, are not willing

to share the big data because of the great value. However, there are certain critical

scenarios that demand big data from different stakeholders with conflict of interests.

For example, accurate disease diagnosis requires a large amount of hospitalized cases

all around the worlds while few hospitals can hardly make it. To this end, the concept

of big data sharing arises to enable different stakeholders so that they can find, access,

and use big data from each other.

1

Chapter 1. Introduction

There are many big data sharing platforms, e.g., SEEK1, Amazon Web Services Data

Exchange2, and HKSTP Data Studio3. The traditional platforms can be classified into

two categories, i.e., data hosting center (DHC) and data aggregation center (DAC).

A DHC collects the original big data from the data owners and find possible data

users to share the big data and get rewards. Since big data is easy to be replicated,

DHCs are often used for open big data, that is, the big data shared on DHCs are

purposely opened to the public. In terms of private data, DHC suffers a lot from

the privacy issue. In terms of DAC, it collects the descriptions of the big data from

the data owners, provides a platform for the potential users to search the big data,

and facilitates big data sharing between the data owners and data users. Because the

DAC cannot guarantee whether the claims from the data owners are correct, DAC

suffers a lot from the authenticity issue.

Privacy

Authenticity

Data

Aggregation

Center

Data Hosting

Center

Blockchain-

based Big Data

Sharing

Figure 1.1: Motivation of blockchain for big data sharing

In recent years, blockchain technology has been attracting extensive attention from

both industry and academia, since it enables trustless data storage with auditability.

As shown in Figure 1.1, blockchain can address the issues of privacy and authenticity

1SEEK: Finding, Sharing, and Exchanging Data, Models, Simulations and Processes in Science
2AWS Data Exchange: Easily Find and Subscribe to Third-party Data in the Cloud
3Data Studio at Hong Kong Science Park

2

https://seek4science.org/
https://aws.amazon.com/data-exchange/
http://datastudio.hkstp.org/

1.1. Background & Motivation

Decentralization: removal of third party

Transparency: visible to everyone

Immutability: once stored, cannot be changed

Authenticity

Privacy

Figure 1.2: Distinctive features of blockchain

in big data sharing because of the distinctive features of transparency, immutability,

and decentralization as shown in Figure 1.2. On the one hand, the big data will be

hosted by the data owners themselves rather than a trustworthy third party, in which

the privacy will not be violated. On the other hand, the data is verified and confirmed

by the nodes in blockchain network, which guarantees the data authenticity. To this

end, blockchain can be served as a promising solution to big data sharing.

Here, we briefly introduce blockchain and its underlying consensus protocol. Tradi-

tionally, a blockchain is a chain of blocks linked and secured using cryptography. As

shown in Figure 1.3, each block contains four components, namely block size, trans-

action counter, block header, and transactions. The block size, transaction counter,

and transactions are the number of bytes of the block, the number of transactions,

and all the transactions respectively. The block header contains six fields, namely

version, previous block hash, timestamp, difficulty target, nonce, and Merkle root.

The version is a version number to track the consensus protocol upgrades, the times-

tamp is the approximate create time of the block, while the difficulty level and nonce

are used for proof-of-work consensus protocol. The Merkle root refers to the hash of

all the hashes of all the transactions. The previous block hash is a reference to the

hash of the previous block along the chain. The hash value of a block, which is the

3

Chapter 1. Introduction

Size #Txs.

Header

 Version

 Previous Hash

 Timestamp

 Difficulty Target

 Nonce

 Merkle Root

H(*)

H12 = H(H1+H2) H34 = H(H3+H4)

H(H12+H34)

Transactions
Tx. 1 Tx. 2 Tx. 3 Tx. 4

H1 H2 H3 H4

Block N-1 Block N

Size #Txs.

Header

 Version

 Previous Hash

 Timestamp

 Difficulty Target

 Nonce

 Merkle Root

Transactions

Tx. 1 Tx. 2 Tx. 3 ...

Figure 1.3: Structure of a traditional blockchain

primary identifier of a block, is made by hashing the block header twice through the

SHA-256 hash function.

A blockchain is replicated among the members of a network, in which each member

holds a replication of the committed transactions and a pool of the submitted but

uncommitted transactions. Each member is responsible for packing the transactions

from the pool to the blocks to make them committed. In order to make the blockchain

remain functional, the members need to agree on a certain state of the blockchain.

This procedure is accomplished by the underlying distributed consensus algorithm.

As shown in Figure 1.4, it requires three steps for a transaction to be committed. At

first, the user has some raw transactions (the red ones) and want to publish them.

Then, the user submits the raw transactions to the blockchain network. Each member

in the blockchain network receives the transactions from the user and maintains a

transaction pool. The transactions in pool are called submitted transactions (the

yellow ones). At this time, the members are supposed to make consensus on the way

to maintain the blockchain based on the transaction pool. The consensus consists of

4

1.2. System Architecture

Blockchain

BlockTransaction Pool

User

Tx

Tx

Tx

Tx

Header

Transactions

Size #Txs.

...

TxTx

Tx

Submit

Pack

Commit

Tx

Tx

Tx Tx
Tx

Tx

Tx

Tx

Tx

Tx

Figure 1.4: The procedure for committing transactions

two steps, namely packing and committing. At the packing stage, each member selects

some submitted transactions and puts them into a block. The transactions that are

packed into a block but not yet committed are called packed transactions (the blue

ones), and the block containing packed transactions are called uncommitted block.

Finally, at the step of committing, the members make efforts to get the uncommitted

blocks validated and committed. If a transaction is in a validated block, it is said to

be committed (the green ones).

1.2 System Architecture

Figure 1.5 presents the system architecture of blockchain-based big data sharing.

There are three entities in the system, i.e., data sharer, data sharee, and blockchain

nodes explained as follows:

• The data sharer is the data owner who wants to share the big data.

• The data sharee aims to use the shared big data.

5

Chapter 1. Introduction

Data

sharer

Data

sharee

In
te

rf
ac

e

Raw Data

Publish data/metadata
Metadata Chain

Blockchain Node i

Sharingdata Chain

Publish Op

Use data

Record

Storage

Consensus

Network

Smart Contract

Blockchain

Node n

Blockchain

Node j

Usage Op

Trusted Area

Data Management

Functions

Figure 1.5: System architecture of blockchain-based big data sharing

• The blockchain nodes are the service provider who provides the big data sharing

services for the data sharers and sharees.

The data sharers publish the data or metadata using the interface provided by the

blockchain nodes. Meanwhile, it stores the raw data locally and manage them in

a trusted area, e.g., trusted execution environments. The data sharees use the big

data from the data sharers and generate sharing records. The data publishing and

usage operations are stored in two blockchains, i.e., metadata chain and sharingdata

chain, respectively. The blockchain nodes maintain the two blockchains and interact

with each other. The metadata chain and sharingdata chain share the same layered

blockchain infrastructure consisting of smart contract layer, consensus layer, storage

layer, and network layer. However, metadata chain and sharingdata chain have dif-

ferent requirements on access control, performance, anonymity, etc. and they can will

be optimized based on the requirements.

6

1.3. Research Framework

1.3 Research Framework

Leader Election

Transaction Packing

Application Layer

Chapter 5Chapter 4

Chapter 3

Contract Layer

Consensus Layer

Data Layer

Cryptographic Functions

Network Layer

Healthcare Information ExchangeSupply Chain Management

Smart Contract Execution Management

Smart Contract State Management Smart Contract Execution Model

(Order-Execute,

Execute-Order-Validate)

Proof of X

Proof of

Work

Proof of

Stake

Proof of

Similarity

Random Fairness

PBFT Raft

Asymmetric

Cryptography

Chameleon Hash

Function

Zero Knowledge

Proof
Ring Signature

Merkle Tree

Secure Hash

Algorithms
Lower OSI

Protocols

Peer Discovery

Protocols

Overlay P2P

Protocols

Atomic Broadcast

Protocols

Local Ledger Replica

(LevelDB, CouchDB)

Data Serialization

(Chain, DAG, Tree)

Data Aggregation

(Block, Microblock)

Atomic Data Record

(Transaction)

Figure 1.6: Research framework of blockchain-based big data sharing

In this thesis, we aim to identify and address the challenging issues in blockchain-

based big data sharing. The research framework is shown in Figure 1.6. The research

framework consists of six layers as follows:

• Application layer : it provides the main applications of blockchain-based big

data sharing, e.g., supply chain management and healthcare information ex-

change. In chapter 2, we presents a comprehensive survey of big data sharing.

• Contract layer : it allows users to write, deploy, and use smart contracts. The

7

Chapter 1. Introduction

contract layer should support contract state management and the execution

environment. Note that contract execution models can be different, e.g., order-

execute model and execute-order-validate model.

• Consensus layer : it outputs an ordered list of transactions agreed by all the

nodes in the blockchain network given a set of transactions as input. The proce-

dure of consensus is divided into two phases, i.e., leader election and transaction

packing. The traditional “proof of x” consensus mechanisms, e.g., proof of work

and proof of stake, integrates the two phases. The leader election algorithms

include PBFT and Raft while the transaction packing is normally based on

random strategy. In chapter 3, we present a fairness-based transaction packing

algorithm.

• Data layer : it provides support of cryptographic operations and reliable storage

of blockchain data. The blockchain is formed through atomic data record (trans-

action), data aggregation (e.g., microblock and block), and data serialization

(e.g., chain, DAG, and tree), and replicated locally in databases (e.g., LevelDB

and CouchDB). Various cryptographic functions should be provided to sup-

port the construction of a secure blockchain such as ring signature, zero knowl-

edge proof, Merkle tree, asymmetric cryptography, secure hash algorithms, and

chameleon hash functions. In chapter 5, we present a dynamic ring signature

algorithm to provide provable anonymity; in chapter 4, we present a privacy-

preserving and efficient multi-keyword searchable encryption scheme.

• Network layer : it provides the basic network operations and functions to in-

teract with users and other blockchain nodes. The network functions include

lower OSI protocols, peer discovery protocols, overlay P2P protocols, and atomic

broadcast protocols.

8

1.4. Thesis Organization

1.4 Thesis Organization

The rest of this thesis is organized as follows:

• In chapter 2, we present a comprehensive survey of big data sharing. Previous

research and surveys about big data sharing focus on one or two technical

solutions or application domains while we give the first full view of big data

sharing. In particular, we articulate the definition of big data sharing and

distinguish the concept with data sharing, data exchange, and big data trading.

Then, the general procedures, benefits, and requirements of big data sharing

are clarified. Afterward, we study the existing big data sharing platforms,

and categorize them into data hosting centers and data aggregation centers.

Moreover, the challenging issues for developing big data sharing solutions are

demonstrated together with explanations of the potential solutions. Finally, we

describe two popular big data sharing applications in recent years, i.e., big data

sharing for healthcare and big data trading, and their major challenges.

• In chapter 3, we propose a fairness-based transaction packing algorithm to im-

prove the quality of data sharing service. In existing permissioned blockchains,

transactions are arbitrarily packed into blocks without consideration of their

waiting times. Hence, there will be a high deviation of the transaction response

times, which is known as lack of fairness. Unfair permissioned blockchain de-

creases the quality of experience. Moreover, some transactions can get time-

outs if not responded for a long time. To address the issue, we propose Fair-

Pack, the first fairness-based transaction packing algorithm for permissioned

blockchain. In particular, we gain the insight that fairness is positively related

to the sum of waiting times of the selected transactions through theoretical

analysis. Based on the insight, we transform the fairness problem into the sub-

set sum problem, which is to find a valid subset from a given set with subset

sum as large as possible. However, it is time-consuming to solve the problem

9

Chapter 1. Introduction

in a brute-force approach because there is an exponential number of subsets for

a given set. To this end, we propose a heuristic and a min-heap-based optimal

algorithm for different parameter settings.

• In chapter 4, we propose a multi-keyword search algorithm to enhance the pri-

vacy and efficiency during data usage between the data sharers and sharees.

Recent research has demonstrated searchable blockchains that not only provide

reliable search over encrypted distributed storage systems but ensure privacy is

preserved. Yet, current solutions focus on single-keyword search over encrypted

data on the blockchain. To extend such approaches to multi-keyword scenar-

ios, they essentially perform a single-keyword search multiple times and take

the intersection of the results. However, such extensions suffer from privacy

and efficiency issues. We propose a bloom filter-enabled multi-keyword search

protocol with enhanced efficiency as well as privacy preservation. In the pro-

tocol, a low-frequency keyword selected by a bloom filter will be used to filter

the database when performing a multi-keyword search operation. Because the

keyword is of low frequency, the majority of the data will be excluded from

the result, which reduces the computational cost significantly. Moreover, we

propose to use pseudorandom tags to facilitate completing a search operation

in only one round. In this way, no intermediate results are generated, and the

privacy is preserved.

• In chapter 5, we propose dynamic ring signature which can provide provable

anonymity during data sharing. We study the anonymity problem in the sce-

nario of blockchain-based e-voting systems (BEVs). Although blockchain brings

distinctive features of auditability and immutability to e-voting systems, the

public ballot information makes it challenging to preserve the voters’ anonymity.

There are three major approaches to achieve anonymous BEVs. First, zero-

knowledge proof and blind signature are impractical due to the high compu-

tational complexity and unverifiable ballot information. Second, linkable ring

10

1.4. Thesis Organization

signature, in which each voter adds mixins so that the public can verify the bal-

lot but cannot identify the exact voter, cannot preserve anonymity considering a

set of ballots. Dynamic ring signature is a novel anonymous mechanism achiev-

ing provable anonymity in BEVs. The key idea is to select mixins intentionally

rather than randomly as in traditional ring signature schemes. In particular,

we present a maximum flow-based algorithm with rigorous proof to validate the

anonymity for a set of ballots, which is not considered ever before. Moreover,

a time-efficient heuristic algorithm for mixin selection is proposed based on the

intuition to include voters with different choices. Theoretical analysis and ex-

perimental results indicate the superiority of dynamic ring signature in terms

of fewer mixins and less time overhead than the traditional approach.

• Chapter 6 concludes this thesis with summarization of the main contents and

our ideas in terms of the future of blockchain-based big data sharing.

11

Chapter 2

Big Data Sharing: a

Comprehensive Survey

Despite the significance of big data sharing as introduced in previous chapter, there

are a lot concerns and challenges hindering its process of maturity. One of the most

critical issues lies in the privacy concerns. A lot of big data, e.g., healthcare records

and social media posts, contains sensitive information. Direct transfer of the sensitive

big data may violate the terms of usage and even break the law. Besides the privacy

concerns, there are still many other issues, such as the data heterogeneity, value

assessment, and pricing model, that are challenging while necessary to be tackled.

In the literature, there are a lot of solutions towards addressing the challenges while

lacking a comprehensive survey. Indeed, there are a bunch of survey papers related

to but are not exactly big data sharing. In particular, some surveys explain the

concept and the underlying techniques of big data in a very broad sense [29][88][126]

or are limited to a special aspect or applications of big data, e.g., security and privacy

[177], platforms [147], machine learning [132], computational health informatics [50],

Internet of Things [55], multimedia [130]. Some other papers focus on sharing of a

particular type of data, i.e., scholarly data [173][154][67] and healthcare data [133][11]

12

because they are very important or a concrete technique, e.g., proxy re-encryption

[131]. The most relevant paper is a survey about big data trading [104]. However, big

data trading is only a subset of big data sharing and the survey focuses on the aspects

of pricing models, issues of platform design, and digital copyright protection schemes,

which is really limited in terms of the scope. In summary, the existing research

and surveys about big data sharing only focus on one or two technical solutions or

applications domains, which are not systematic enough.

Big Data Sharing (BDS):

Concept, Challenges, and Solutions

Introduction to Big Data

BDS Definition

Basics of

Big Data Sharing
BDS General Procedures

BDS Benefits

BDS RequirementsExisting Platforms

and Categorization

Epimorphics Linked Data Platform

HKSTP Data Studio

Existing PlatformsSEEK

InterPlanetary File System

Amazon Web Services Data Exchange

Data Hosting Center

CategorizationData Aggregation Center

Decentralized BDS Platforms

Promising

Applications

BDS for Healthcare

Big Data Trading

Future

Directions

Blockchain-based BDS

Edge as BDS Infrastructure

Challenges and

Potential Solutions

Standardization of Heterogeneous Data

Data Traceability and Accountability

Value Assessment and Pricing Model

Security

Privacy

High Quality of Service

Figure 2.1: Survey structure

To the best of our knowledge, this is the first comprehensive survey about big data

sharing. The structure of this survey is shown in Figure 2.1. We articulate the defi-

nition, general procedures, benefits, and requirements of big data sharing in Section

2.1. A special contribution is that we collect the concepts that are similar to big

data sharing, and demonstrate the differences in detail. Moreover, we summarize

the existing big data sharing platforms with description of the representative ones in

Section 2.2. The platforms are categorized into data hosting center and data aggre-

gation center based on the system architecture. In addition, the challenging issues of

developing big data sharing solutions are identified with explanation of the possible

solutions in Section 2.3. Finally, we list two representative application domains of big

data sharing in Section 2.4.

13

Chapter 2. Big Data Sharing: a Comprehensive Survey

2.1 Basics of Big Data Sharing

In this section, we introduce the basics of big data sharing. First, we explain what

big data is and why big data matters. Second, we turn to our focus and give a

formal definition for big data sharing. Third, the general procedures of big data

sharing are demonstrated. Forth, the benefits of big data sharing are illustrated from

the perspectives of both data sharers and the public good. Finally, we explain the

general requirements of big data sharing.

2.1.1 Introduction to Big Data

Before introducing what big data sharing is, we should figure out what big data

is. The term of big data has been used since late 1990s and got popular quickly

since its appearance in Communications of the ACM in 2009 [73]. As a matter of

fact, big data has been defined as early as 2001. At that time, big data is generally

defined according to its volume, that is, big data refers to a large volume of data

with sizes beyond the ability of commonly used software tools to capture, curate,

manage, and process within a tolerable elapsed time [148]. Later on, various “Vs” are

added to describe big data, among which variety and velocity are broadly accepted.

Particularly, the variety of big data refers to the various modalities of data while the

velocity of data is the speed at which the data is generated and processed. To this

end, the “3Vs” model is formed to describe big data and such an model is adopted

by Gartner and many other enterprises such as IBM and Microsoft for a long time.

Figure 2.2 illustrates the primary characteristics of big data in three dimensions ex-

plained as follows:

• Volume. The process of digitization in the modern society makes it plain to

accumulate a large volume of data using numerous information-sensing Internet

of Things (IoT) devices. The volume of big data increases from megabytes

14

2.1. Basics of Big Data Sharing

Velocity

Volume

Variety

Batch

Periodic

Real-time

GB TB PB EB

Unstructured

Structured

(text, media, sensor, ...)

Figure 2.2: Primary characteristics of big data

(MB), gigabytes (GB), to exabytes (EB) and beyond.

• Velocity. The increasing generation speed of big data requires advanced pro-

cessing technologies. The most common BDA techniques is batch processing,

in which the data is assumed to be ready and invariant in size. As the data

velocity increases, more sophisticated BDA techniques, e.g., periodic processing

and real-time processing, are demanded.

• Variety. In terms of variety, the data can be either structured or unstructured.

On the one hand, the structured data conforms to some well-defined data models

or scheme, e.g., length-delineated text strings and range-restricted integers, and

usually resides in relational databases. On the other hand, unstructured data

is essentially everything else, which includes text, photos, audio, video, sensor

data, etc., and non-relational databases are used for storage in general.

Besides volume, variety, and velocity, there is another “V”, i.e., value, which has

been attracting attention from both industry and academia recently. An example of

data value comes from Google LLC during the swine flu pandemic in 2009. At that

15

Chapter 2. Big Data Sharing: a Comprehensive Survey

time, Google obtained timely information by analyzing the big data coming from its

search engine, and provided even more valuable information than that provided by

the disease prevention centers. Google found that during the spreading of influenza,

entries frequently sought at its search engines would be different from those at or-

dinary times, and the use frequencies of the entries were correlated to the influenza

spreading in both time and location. Google found 45 search entry groups that

were closely relevant to the outbreak of influenza and incorporated them in specific

mathematic models to forecast the spreading of influenza and even to predict places

where influenza spread from. The research results have been published in Nature

[58]. Besides the social impact as value, big data is also potential to create earnings

and reduce costings for enterprises, e.g., to improve the recommendation results for

e-commerce platforms, and to optimize the pricing strategies for airline companies.

To summarize, we use a sentence from an International Data Corporation report to

conclude the introduction of big data as follows: big data technologies describe a

new generation of technologies and architectures, designed to economically extract

value from very large volumes of a wide variety of data, by enabling the high-velocity

capture, discovery, and/or analysis [53].

2.1.2 Definition of Big Data Sharing

Although big data can create remarkable values for the society and enterprises, there

are still many challenges hindering its development, e.g., inefficient representation of

data, inferior analytical mechanisms, and lack of data cooperation. In this chapter,

we focus on data cooperation, or big data sharing from a more general perspective.

Big data sharing refers to the act of the data sharers to share big data so that the

sharees can find, access, and use in the agreed ways.

There are several other concepts, i.e., data sharing, data exchange, and big data

trading, that are similar or related to big data sharing. In fact, they share some

16

2.1. Basics of Big Data Sharing

similarities, however are different, to some extent. In the following, we explain their

concepts and differences with big data sharing one by one.

Table 2.1: Comparison among big data sharing, data sharing, data exchange, and big

data trading

Concept Big data sharing Data sharing Data exchange Big data trading

Data Unrestricted Scholarly data for most of the time Unrestricted Unrestricted

Reward Unrestricted No reward for most of the time Right of using data Unrestricted

Commerciality Unrestricted Non-commercial for most of the time Unrestricted Commercial

The term data sharing often refers to the practice of making data used for scholarly

research available to other investigators [154][51]. The data in the term data sharing is

more about scholarly data rather than general data as in big data sharing. Moreover,

big data sharing requires the data to be shared in a secure way while the purpose

of data sharing is more about making the data open. Indeed, the high volume,

high variety, and high value of big data demands high performance, unified data

representation, and advanced security for big data sharing compared to data sharing.

There are two kinds of definitions for data exchange. Some researchers define data

exchange as of process of taking data structured under a source schema and trans-

forming it into data structured under a target schema, so that the target data is an

accurate representation of the source data [3]. Such a definition is different from big

data sharing substantially, as a result, is not considered in this chapter.

Some others consider data exchange as exchange of data, that is, the act of giving

data owned by one party to another and receiving data owned by the other party in

return [27]. The acts in the definition of data exchange and big data sharing differ

a lot. In particular, big data sharing focuses on finding, accessing, and using data,

while data exchange targets on exchange of the right of using data. Actually, the

word exchange emphasizes that the thing transferred between two parties should be

of the same kind, and the thing refers to the right of using data in data exchange.

17

Chapter 2. Big Data Sharing: a Comprehensive Survey

Big data trading refers to the action or activity of buying or selling big data [104]. It

has been a hot topic in recent years because many enterprises and commercial organi-

zations have found that it is of great potential to make money by selling the collected

data of high value. At the meantime, many other enterprises or organizations need

the data for certain purposes, e.g., conducting research in universities and improving

quality of products for companies. We can see that the concept of big data trading

is a subset of the one of big data sharing. Particularly, big data trading is restricted

to be commercial while big data sharing is unrestricted.

The differences among big data sharing, data sharing, data exchange, and big data

trading in terms of the involved data types, the reward to get data, and the com-

merciality are summarized in Table 2.1. First, we can see that big data sharing is

different from data sharing from all the three perspectives. Second, the main differ-

ence between big data sharing and data exchange lies in the reward to get data, which

is unrestricted and the right of using data, respectively. Finally, the concept of big

data sharing contains big data trading because big data trading must be commercial

while the commerciality of big data sharing is unrestricted.

2.1.3 General Procedures of Big Data Sharing

After illustration of what big data sharing is, we explain the general procedures of

big data sharing in this section. Generally speaking, there are three steps for big data

sharing, i.e., data publishing, data search, and data sharing, as follows:

• Data publishing : the data owners prepare and issue the the big data they owned

for public access. The purpose of data publishing is to let the public be aware

that there is a piece of big data and its brief information. Data publishing

supplies commodities for a big data sharing platform. Note that it is not neces-

sary for the data owners to make the original big data public because the data

owners may want to enforce access control upon the big data.

18

2.1. Basics of Big Data Sharing

• Data search: the data users query the big data sharing platform for big data

possibly with some constraints, and the big data sharing platform responds.

The purpose of data search is to make it convenient for the data users to find

the big data they want. Data search is significant because data users are the

customers for a big data sharing platform while providing content services for

the customers is crucial.

• Data sharing : the data users request big data in the big data sharing platform

and the corresponding data owners accept or reject the request. Data sharing

is the last step for a big data sharing platform. If the data owner accepts the

request, then it is called successful data sharing; otherwise, it is failed data

sharing. After successful data sharing, the data owner will become the data

sharer while the data user will become the data sharee.

2.1.4 Benefits of Big Data Sharing

There are a lot of benefits for big data sharing. On one hand, the sharees, i.e., the

parties to receive the shared data, can benefit for sure because they can use the

data for their purposes. Moreover, the sharers, i.e., the parities to share data, can

also benefit because they will gain more visibility from the public and possibly gain

monetary rewards. Finally, there are a lot of public good during the sharing activities.

Figure 2.3 illustrates the benefits of big data sharing from the perspectives of sharers

and public good. The benefits for the sharees are not considered here because of the

strong dependence on the purposes of the sharees.

On one hand, the benefits for the data sharers are summarized as follows:

• If the sharers are scholars and the shared data is scholarly data, then big data

sharing can increase the visibility of the research work and is potential to en-

hance academic reputation. The scholarly data to be shared may include free

19

Chapter 2. Big Data Sharing: a Comprehensive Survey

Benefits for

Sharers

Public Good

Benefits of

Big Data Sharing

Increase visibility of research work and enhance

academic reputation

Help enterprises or public sectors get recognized

and mobilize continuous cooperation

Get monetary rewards by data trading

Ensure the soundness of research work by public

replication and verification

Improve the quality of shared data

Facilitate novel and impactful findings

Figure 2.3: Benefits of big data sharing

the download of full text, the source code and tools for experiments, and the col-

lected data for performance evaluation. There is no doubt that the researchers

are more willing to follow those works with open data, because the experiments

can be repeated and the performance can be compared more easily. To be spe-

cific, the articles assigned to open access were associated with 89% more full

text downloads and 42% more PDF downloads [41]. The number of citations

is an important indicator of academic reputation. In the area of medicine, it is

shown that publicly available data was significantly associated with a 69% in-

crease in citations, independently of journal impact factor, date of publication,

and author country of origin [129].

• If the sharers are enterprises or public sectors, big data sharing is potential to

help them receive increasing recognition and can mobilize continuous coopera-

tion. In recent years, a number of open government data portals came into

being, such as data.gov.uk, data.gov, and data.gov.sg, which provide means

for citizens and stakeholders to obtain government information about the lo-

cality or country in question [4]. Such open government data initiatives can

establish public trust in government. In terms of enterprises, they can share big

data through holding data analytics competitions to attract attentions from the

public. For example, Kaggle, as an online community of data scientists and ma-

chine learning practitioners, has already received thousands of public datasets

20

2.1. Basics of Big Data Sharing

and code snippets. Moreover, a lot of cases of cooperation between companies

and researchers originates from the public datasets of the companies.

• There is no doubt that the sharees can get monetary rewards by big data sharing,

more specifically, big data trading, from a commercial perspective, while the

aforementioned two benefits are considered from a non-commercial perspective.

Numerous data with great value is generated everyday because of the large

number of users and inexpensive devices. According to the statistics, Facebook

has more than two billion monthly active users and generates four petabytes of

data per day. Although the data cannot be sold due to privacy issues and the

terms of service, the value of the data is still there, which makes the market

cap of Facebook to be over 690 billion dollars by July 17, 2020. In recent

years, various big data trading platforms, e.g., Japan Data Exchange Inc. and

Shanghai Data Exchange Corp., have been developed to meet the demands of

the companies who possess valuable big data.

On the other hand, the benefits for the public good are summarized as follows:

• Big data sharing helps in promoting academic integrity [138]. Academic in-

tegrity, whose basic requirement is to avoid plagiarism and cheating during

academic activities, is the moral code or ethical policy of academia. On the

one hand, if the big data involved in scholarly activities can be shared, the

scientific results will be easier to be reproduced by replication of the particular

experiments. On the other hand, the researchers themselves will be cautious of

publishing academic findings. To this end, a virtuous circle will be formed for

promotion of academic integrity progressively. More generally, big data sharing

helps the public keep the evidence of scientific results, which is essential for

science to move forward.

• Making the data available to their peers and the public incentivizes the re-

searchers to better manage their data and ensure their data are of high quality.

21

Chapter 2. Big Data Sharing: a Comprehensive Survey

Redundancy reduction and data compression has been one of the challenging

issues for big data for years [134]. Generally, there is a high level of redundancy

in datasets. Big data reduction is effective to reduce the indirect cost of the

entire system without affecting the potential values of the datasets. During big

data sharing, the sharers may improve the data quality by application of various

big data reduction techniques so as to attract more sharees.

• Big data sharing encourages more connection and collaboration among researchers,

which can result in important new findings within the field [10]. Data are the

foundation of scientific progress. Considerable efforts are required by researchers

to obtain useful data, mostly through projects supported by the public fund-

ings. However, their purpose is often limited to the production of scientific

publications and, unfortunately, the vast majority of data are not fully utilized.

In a time of reduced monetary investment for science and research, big data

sharing is more efficient because it allows researchers to share resources. Data

sharing allows researchers to build upon the work of others rather than repeat

already existing research.

The benefits of big data sharing are summarized as above from the perspectives of

the data sharers and public good. Every coin has two sides, and big data sharing is

no exception. There are some potential drawbacks for big data sharing, for exam-

ple, sharing of sensitive data raises privacy concerns and the data ownership will be

complicated to be figured out during sharing. However, the drawbacks of big data

sharing is not the focus of this chapter, and the readers may refer to [160] and [67]

for more information.

2.1.5 Requirements of Big Data Sharing Solutions

Although there are numerous benefits for big data sharing, it is non-trivial to design

a solution because of the requirements. In this subsection, we identify and explain

22

2.1. Basics of Big Data Sharing

the basic requirements, i.e., security and privacy, flexible access control, reliability,

and high performance, for big data sharing solutions.

First, security and privacy are essential for big data sharing. If a big data sharing

solution is not secure or cannot protect the privacy, then the users can hardly trust

such a solution and even will not use it. We concretize security and privacy into data

security, user privacy, and data privacy as follows:

• Data security. Big data sharing is a kind of act upon big data between two

parties. A big data sharing solution should prevent malicious access or modifi-

cation of the big data by anyone other than the two parties [182]. In another

word, anyone who is not granted with the right of usage by the data sharers

can never access or modify the data. Moreover, the solution should be able to

recover the big data and related sharing records if they are lost or destroyed by

destructive forces.

• User privacy. There are two parties in big data sharing, which are the data

sharer and sharee. User privacy is to protect the data sharer and sharee from

exposure of their identities by other parties and even each other [30]. In par-

ticular, the identities of the two parties should not be revealed to other parties.

Moreover, it is preferred that the two parties involved in big data sharing focus

on the data itself without knowing each other.

• Data privacy. In real-world applications, there are numerous big data with great

value but high sensitivity. For example, electronic health records of patients is

very useful for disease diagnose but is extremely sensitive. As a result, the

privacy of the big data is crucial for big data sharing. Generally, data masking

or data obfuscation techniques [8] can be used to preserve the data privacy

before big data sharing.

Second, a big data sharing solution is expected to support flexible access control,

23

Chapter 2. Big Data Sharing: a Comprehensive Survey

which includes “sharing what”, “sharing to whom”, and “how to share”. Specifically,

sharing what and to whom means the data to be shared and the sharees, respectively,

while “how to share” means the various ways to share big data. Some possible

approaches of sharing big data are as follows:

• Big data preview : the big data sharer allows the sharee to view only the de-

scription or part of the big data possibly in a tool with restricted functions. In

this mode, the sharees may not have full access to the original big data. The

sharees have to estimate the value of the big data based on the description or a

small part of the big data. Moreover, preview tools are often provided to view

a downgraded version of the original data. By saying downgrading, it can be a

slice if the original data is text, or a low-resolution version if the original data

is video or audio [65].

• Search over big data: the big data sharer allows the sharee to query using

predefined interface and responds to the queries. In this mode, the act of usage

of the big data is restricted to be search. There are a variety of formats of

the big data and all kinds of search operations, e.g., keyword query [76], range

query [145], ranked search [25], and similarity search [183]. The big data sharer

has the freedom to choose the data formats and allowed search types that can

be performed by the sharee.

• Nearline computation: the big data sharee is allowed to perform operations

using a combination of predefined interfaces. Nearline computation is an exten-

sion of search with a broader range of acts to use the big data. Specifically, the

data sharee can not only search over the big data but can also perform certain

kinds of operations such as add, deletion, and update. The word “nearline”

means the computation is “nearly online” [168], i.e., not immediately available,

but can be made online quickly without human intervention.

• Big data transfer : the sharer directly transfers the big data to the sharee so

24

2.1. Basics of Big Data Sharing

that the sharee can perform possibly all kinds of operations upon the shared big

data. After big data transfer, the data will be located at the place where the

data sharee is. The operations that can be performed by the sharee after big

data transfer depend on the contract between the data sharer and sharee. For

example, if the data ownership is not transferred, then the data sharee should

not spread the data from a legal point of view.

Third, a big data sharing solution is expected to ensure high reliability. In another

word, the big data sharing platform should have very low possibility to malfunction.

Such a requirement is very important because failure of the system may lead to lose

of the high value of the big data. One of the key issue to ensure high reliability is to

avoid single point of failure. Decentralization is very important because a centralized

platform to maintain data suffers a lot from single point of failure. There are three

functions for a big data sharing platform, i.e., data publishing, data search, and data

sharing. The requirement of reliability should take care of all the three functions.

In particular, once the big data is published, it can be searched by the public and

shared by the data owner. Moreover, the results of a data search request should be

sound and complete. Finally, there should be no way for the data sharer and sharee

to violate the predefined rules after big data sharing.

Finally, high performance is preferred for a big data sharing solution. There can

be a large amount of users generating a huge quantity of transactional records in a

big data sharing platform continuously. The users include enterprises, organizations,

government sectors, and individuals while the transactional records include publishing

records, search record, and sharing records. It is a must for the big data sharing

solution to deal with the numerous users and transactional records so as to provide

a high quality of service. Moreover, the data involved is big data of high volume.

The big data sharing platform should be efficient enough to publish and share the big

data. Last but not least, data search should be completed with high performance.

Data search is a very important way for the data sharees to find big data they need.

25

Chapter 2. Big Data Sharing: a Comprehensive Survey

It is preferred that there are various ways for the data sharees to discover big data in

a time-efficient way.

2.2 Existing Platforms and Categorization

In this section, we first introduce some popular big data sharing platforms all around

the world. Then, we demonstrate our categorization of the existing platforms and

illustrate how they works.

2.2.1 Existing Platforms

In this section, we introduce five popular big data sharing platforms in brief. The

selection is based on a balance of the popularity, nationality, and system features.

Epimorphics Linked Data Platform

Linked Data Platform (LDP)1 is a big data sharing solution developed by a software

company called Epimorphics Ltd located in UK. LDP can be utilized in two ways.

On one hand, LDP is a software solution that can be installed as local infrastructure

for big data sharing. For example, a university can install LDP for different faculties,

departments, and offices to share data. On the other hand, LDP is a platform that

is being used by the UK government2 to host data for a wide range of public and

private sectors. In this chapter, we only consider the second usage because our focus

is the existing big data sharing platforms.

The users can publish datasets to LDP and display the description together with links

to the datasets. As shown in Figure 2.4, the description includes the title, publisher,

1Epimorphics
2UK Open Government Data

26

https://www.epimorphics.com/data-sharing-platform/
https://data.gov.uk/

2.2. Existing Platforms and Categorization

More from this publisher

All datasets from Scottish Court

Service

Related datasets

Organogram and staff pay data

for School Food Trust

Organogram and staff pay data

for Postcomm

Organogram and staff data for

ONE

Organogram and staff pay data

for UK Film Council

Organogram and staff pay data for

Scottish Court Service

Data links

Link to the data Format File added Data preview

Organogram, as of 30/06/2010 GIF 20 October 2010 Not available

Senior staff posts including vacancies, as of 30/06/2010 CSV 20 October 2010 Preview

Junior staff numbers and payscales, as of 30/06/2010 CSV 20 October 2010 Preview

Senior staff pay, as of 30/06/2010 CSV 20 October 2010 Preview

Contact

Freedom of Information (FOI) requests

http://www.whatdotheyknow.com/body/scottish_court_service

Title Related datasets

Published by: Scottish Court Service

Last updated: 20 October 2010

Topic: Government

Licence: Open Government Licence

Summary

A list of most Senior Civil Service posts in the Scottish Court

Service including title, contact details, their line manager, and

where disclosed, the name of the officer. Vacant posts are listed as

"Vacant", and posts where the jobholder is not disclosed are listed

as "N/D". Note that a number of officers are not listed for security

reasons.

Figure 2.4: Display of big data on Epimorphics LDP

27

Chapter 2. Big Data Sharing: a Comprehensive Survey

publication time, latest update time, topic, license, summary, data links, and contact.

There can be multiple datasets in the field of data links, each of which contains the

URL to the database, data format, publication time, and a preview if enabled by

the data sharer. In short, the data sharers hold their data on their own servers and

publish the description of the big data on LDP.

Besides data publishing, LDP enables data search in various ways. First, the big data

can be searched based on general keywords. The data users input several keywords,

and the big data with description containing the keywords will be displayed. Fur-

thermore, the data users can filter the big data based on the publisher, topic, license,

and data format. Finally, when displaying the description of a piece of big data, the

related big data will also be shown to the data users.

In terms of data sharing, LDP only supports downloading raw data because the

original big data is maintained by the data owners themselves. Meanwhile, LDP does

not trace how the big data will be used if the data users have downloaded the data.

Note that the implementation of the core functions are publicly available as ELDA3.

HKSTP Data Studio

In 2007, Data Studio was launched by The Hong Kong Science and Technology Parks

Corporation (HKSTP) in Hong Kong Science Park to support the smart city initiative

of the government [114]. The main goal of Data Studio is to provide a platform for

the public and private organizations to share big data so as to facilitate developing

solutions for smart city. In particular, a large amount of government data4 including

population, education, housing, city management, employment and labor, and envi-

ronment are available on Data Studio. Till now, there are 415 datasets contributed

by 64 data publishers on Data Studio.

3ELDA: Epimorphics Implementation of Linked Data Platform
4Hong Kong Open Government Data

28

https://github.com/epimorphics/elda/
https://data.gov.hk/

2.2. Existing Platforms and Categorization

There are two ways for the data owners to share data in Data Studio. One of the

approaches is traditional, in which the data owners can share static data via sharable

links just like how LDP does. The other approach is non-trivial because the data

owner can provide application interfaces (APIs) for the data users to fetch real-time

data. For example, the transport department of Hong Kong government can provide

APIs about the real-time locations of the buses. Such an approach is supplementary to

the sharable links and improves the functions of big data sharing platform remarkably.

Moreover, the data owners who provide APIs can make money by allowing data users

to subscribe to their APIs. Finally, the copyright issue for the approach of big data

sharing via real-time APIs is less severe because the data owners can maintain a list

of data users who are subscribing to their APIs.

In terms of data search and data sharing, Data Studio shares the same approaches

and disadvantages with LDP. That is, Data Studio cannot trace how the shared big

data is being or will be used either. Moreover, the source code of Data Studio is

not released yet and HKSTP does not provide a big data sharing solution for other

enterprises to use.

SEEK

SEEK is a big data sharing platform developed by a group scientists for researchers

in the area of systems biology to share datasets and model in projects [169]. Systems

biology, which studies the computational and mathematical analysis and modeling of

the complex biological systems, is such a special research area that highly demands

sharing of heterogeneous datasets and complex models. The development of SEEK

is exactly to connect the isolated datasets and models all around the world. SEEK is

also provided as a big data sharing solution with open-source code5.

The researchers can publish their data in the format of projects, in which the data

5SEEK Source Code

29

https://github.com/seek4science/seek

Chapter 2. Big Data Sharing: a Comprehensive Survey

can be raw datasets, standard operating procedures (SOPs), models, publications and

presentations. Version control is supported in SEEK for the researchers to update the

shared data if necessary. In particular, if the models can be simulated within SEEK

if following the systems biology markup language [71].

Study:

 a unit of research

 consisting of

 various assays

Assay:

 an analytical

 measurement that

 produces qualitative

 or quantitative data

Investigation:

 a project linking

 related studies

Figure 2.5: ISA model

After the data is published by the researchers, the metadata from the project will

be extracted using the resource description format [24]. In this way, the data in the

projects can be searched via semantic queries. A special characteristic of systems

biology is that the datasets and models are inherently interlinked. In SEEK, the data

model named ISA (investigation, study and assay) [137] as shown in Figure 2.5 is

employed to assist in understanding and exploring the links.

One of the disadvantages of SEEK is that it is not universal for sharing general big

data because of its specialization on systems biology research. Moreover, once the

data is shared on SEEK and downloaded by the data users, there is no clue how the

data will be used just like LDP and Data Studio.

30

2.2. Existing Platforms and Categorization

InterPlanetary File System

IPFS (the InterPlanetary File System)6 is a distributed peer-to-peer (p2p) system for

storing and sharing data. IPFS was initiated by Juan Benet and Protocol Labs [15]

and is open-source and maintained by the public now7.

When a user wants to share a piece of content, a content identifier, or CID, will be

generated by serializing and hashing the content. Such a CID is the unique identifier

for the other users to find the content, which is similar to an address. The IPFS

p2p network stores the users who can provide each piece of content in distributed

hash tables. Each user joining the IPFS p2p network can manage the local data by

indicating what they have, they want, and do not want.

i) I want the data

with CID 0x64EC88C...

(2) I have the data

with CID 0x64EC88C...

(3) I have the data

with CID 0x64EC88C...

(2) I have the data

with CID 0x64EC88C...
Data

transfer

Data

transfer

Figure 2.6: The workflow of IPFS

In the IPFS P2P network, all the users are equal to each other. As shown in Figure

2.6, if the user who wants a piece of data can fetch the data from other users, and at

the same time, become a data provider. Meanwhile, if the user who shares a piece of

data can get the benefits for data backup by other users.

6IPFS: a Peer-to-peer Hypermedia Protocol Designed to Make the Web Faster, Safer, and More

Open
7IPFS Source Code

31

https://ipfs.io/
https://ipfs.io/
https://github.com/ipfs/ipfs/

Chapter 2. Big Data Sharing: a Comprehensive Survey

Although IPFS has been praised a lot by the public, it also faces many issues for

big data sharing. The major challenge is that the users are not well motivated to

use IPFS to share big data because they have to spend a lot of storage and network

resources to exchange the data from others. Indeed, public cloud storage is a better

alternative because it is easy-to-use and there is no need for maintenance. Moreover,

the weak motivation for the users leads to shortage of nodes in the IPFS P2P network,

which makes the distributed IPFS system unreliable in return.

Recently, Protocol Labs has proposed Filecoin, a platform to employ blockchain tech-

nology to motivate people to use IPFS, in which people can get monetary rewards by

providing data storage resources [14]. However, at the meantime, the platform users

have to pay a lot for data storage. To this end, Filecoin will have to compete with

current cloud storage providers, which may be a tall order.

Amazon Web Services Data Exchange

Amazon, as one of the leading cloud service providers, on November 2019 launched a

new service called Amazon Web Services (AWS) Data Exchange aiming to provide the

customers with a secure way to find, subscribe to, and use third-party data. More than

80 data providers have contributed over 1, 000 datasets at launch as announced by

Amazon. Till now, there are around 1, 496 datasets published by 110 data providers.

There are two roles on AWS Data Exchange, i.e., data providers and data subscribers.

The providers can publish free or paid datasets under the terms of usage they spec-

ify, in which the terms include pricing strategy, access policy, etc. Moreover, the

providers can update the published data using the built-in versioning tool. As for the

subscribers, they can subscribe to the public datasets with a monthly or annual plan.

Within the subscription period, the subscribers can load the datasets for local storage

and will receive notifications about updates of the datasets. One of the advantages

brought by AWS is that AWS Data Exchange is seamlessly integrated with other

32

2.2. Existing Platforms and Categorization

AWS services. For example, the datasets can be easily loaded to AWS S3, which is

a cloud storage service provided by AWS, through web interfaces, APIs, and even

command lines. Moreover, the notifications of dataset updates are pushed via AWS

CloudWatch events, which can be consumed in a real-time manner.

AWS Data Exchange provides a convenient platform for different organizations to

publish significant datasets, for example, around 200 datasets for the COVID-19 epi-

demic. Every coin has two sides, and there are still several disadvantages hindering

the development of AWS Data Exchange. First, the data providers need to pay for

storage of the published datasets. The huge volume of big data increases the data

sharing cost substantially. Furthermore, the customers who subscribe to datasets

must provide the personal information to the data publishers. The provided informa-

tion raises the privacy concern. Finally, the datasets published by the data providers

are stored on AWS servers, and there is no guarantee that AWS will not abuse the

datasets although there are legal terms between AWS and the data providers.

2.2.2 Categorization of Existing Platforms

In this section, we describe our categorization of existing platforms, i.e., data hosting

center and data aggregation center, and decentralized data sharing platform. Fur-

thermore, we compare the platforms described in Section 2.2.1 according to their

categories, nationalities, unique features, etc.

Data Hosting Center

The functionalities of a data hosting center (DHC) are similar to the ones of a portfolio

manager in finance. A portfolio manager raises money from the investors and invest

in the stock or bond market to get monetary rewards. Similarly, a DHC collects the

original big data from the data owners and find possible data users to share the big

data and get rewards. The portfolio managers and DHCs have full control of the

33

Chapter 2. Big Data Sharing: a Comprehensive Survey

money from investors and the big data from data owners, respectively. Nevertheless,

DHCs are different from portfolio managers because big data is different from money

in terms of the possibility of duplication. Since big data is easy to be replicated,

DHCs are often used for open big data, that is, the big data shared on DHCs are

purposely opened to the public.

User 1 User 2

ii) Publish data B

Data B
i) Publish data A

vi) Send data B

viii) Acknowledge receival
vii) Acknowledge receival

v) Request data B

iv) Return search result

iii) Search keyword "IoT"

Data A, B, ...Data A

Data Hosting Center

Data B

Data A

Figure 2.7: The workflow of data hosting center

Figure 2.7 shows the workflow of a DHC. First, the data users, i.e., user 1 and 2,

publish big data, i.e., data A and B, at the DHC, respectively. Then, user 1 searches

all the big data using the keyword “IoT”, in the DHC. The DHC responds to user 1

with all the descriptions of the big data related to “IoT”. Subsequently, user 1 request

data B, whose owner should be user 2, from the DHC. Finally, the DHC transfers

data B to user 1, user 1 sends the acknowledgment of receival to the DHC, and the

DHC forwards the acknowledgment to user 2.

One of the key features of DHCs is that the DHCs collect the big data from users and

are expressly delegated to share the big data. SEEK is a typical example of DHCs,

34

2.2. Existing Platforms and Categorization

i.e., the researchers upload their project data to the SEEK platform while the SEEK

platform simply makes the project data publicly accessible for everyone.

One of the major advantages of DHCs lies in the efficiency. DHCs serve as the

centralized repository for all the shared big data. Because of the centralization,

general optimization methods for data storage systems can be applied. For example,

the popular big data can be replicated in advance to improve the data transfer speed.

Moreover, caching techniques can be applied to process big data queries.

Another advantage of DHCs is the authenticity of the big data can be guaranteed.

If the big data is not stored in DHCs, it is possible that the data owners claim the

big data that they do not have. Even worse, the data owners can deny to share the

big data although they promise to do so. the DHCs can serve as the intermediary

between the big data owners and users.

Of course, there are disadvantages for DHCs, among which the data privacy is the

most crucial one. In particular, the DHCs can replicate the big data without the

approval from the data owners. It cannot be guaranteed that the big data will not

be shared according to the policy defined by the data owners.

Data Aggregation Center

The role of a data aggregation center (DAC) to the big data is similar with the

role of a real estate agency to the real estate. A real estate agency aggregates the

information of the real estates from the estate owners, post advertisements to attract

the buyers, and facilitates the deal between the real estate owners and the buyers.

Similarly, a DAC collects the descriptions of the big data from the data owners,

provides a platform for the potential users to search the big data, and facilitates big

data sharing between the data owners and data users. The real estate agencies and

DACs only have the general information of the real estates and big data, respectively,

but cannot control at their disposals. Of course, the DACs are different from the real

35

Chapter 2. Big Data Sharing: a Comprehensive Survey

estate agencies because the authenticity of big data cannot be easily verified but the

real estates can.

User 1 User 2

i) Publish data A

ii) Search keyword "IoT"

iv) Request data A

vi) Send data A
vii) Send data A

viii) Acknowledge receival

v) Request data A

Data A

Data Aggregation Center

iii) Return search result

ix) Acknowledge receival

Figure 2.8: The workflow of data aggregation center

In DAC model, the Center links data services through the API interface among agen-

cies. Data agencies do not need to report, upload to the DAC in advance. The data

is still owned and managed by the data agencies. When an agency needs to search

the data, it will use the real-time interaction with the DAC to send the data request.

The DAC will relay and broadcast this request to other agencies. Once other agen-

cies with the target data response to this request and return the data, the DAC will

collect all the data and send back to the data demander. However, it is not hard to

find that the DAC has the ability and the opportunity to retain the data. The DAC

can accumulate the data during sharing, and it will gradually become a DHC.

36

2.3. Challenges and Potential Solutions

2.3 Challenges and Potential Solutions

Unlike traditional commodities, data, as a particular non-exclusive resource, has the

characteristics of rapid growth, low copy cost, unknown potential value, trying to

determine ownership, and challenging to control circulation channels. It is designed

to be efficient, credible, fair, secure data sharing, and the trading market has brought

many challenges. In this section, we will introduce the current challenge issues in big

data sharing problems and give some existing research on each issue.

2.3.1 Standardization of Heterogeneous Data

The data set provided by the data owner needs to be standardized. First, the data

needs to be audited to ensure that it is stored correctly as required. Then it is

necessary to normalize the structure of the data set to generate an efficient data set.

Finally, to allow data users to understand the characteristics of the data better, a

data summary should be provided.

Data owners tend to store their data on cloud servers, but cloud servers are not com-

pletely honest. Some malicious cloud service providers may discard some infrequently

used data to reduce resource overhead. Therefore, before big data is shared, it is nec-

essary to ensure that the data owner’s requirements correctly store the data. This

type of problem is called proof of retrievability, proof of storage, and data ownership.

In recent years, some related issues have been studied. For example, Kun He et al.

proposed an effective structure called DeyPoS [64] to achieve dynamic PoS and secure

cross-user data deduplication simultaneously. Jia Yu et al. studied how to Reduce

the damage of customer key exposure in cloud storage audit [180], and provide a

practical solution for this new problem setting.

Many data sets have a certain degree of heterogeneity in type, structure, semantics,

organization, granularity, and accessibility. Incorrect data will reduce the value of

37

Chapter 2. Big Data Sharing: a Comprehensive Survey

the original data and may even hinder useful data analysis. Therefore, in order

for the data to be better analyzed by the computer and understood by the users,

proper pre-processing, such as data cleaning, standardization, calibration, fusion, and

desensitization, is required before sharing the to generate valid data for the original

data provided by the data provider. Specific data sources (such as sensor networks)

may generate an alarming amount of raw data. Most of these data are meaningless

and can be filtered and compressed by orders of magnitude. One challenge is to define

these filters in a way that does not discard useful information. The second challenge is

automatically generating the correct metadata to describe the data to be recorded and

how to record and measure the data. This metadata may be essential for subsequent

data analysis. Generally, the collected information will not be in a format that can

be used for analysis. An efficient data representation should reflect the structure,

class, and type of the data, and integration technology to achieve efficient operations

on different data sets. Therefore, information extraction is also crucial. The process

extracts the required information from the underlying resources and presents it in a

structured form suitable for analysis.

In order to attract data users and help them better choose the data sets they need, big

data sharing platforms need to display data information (such as themes, advantages,

and scope of application). Different from physical commodities, data is easy to copy.

Therefore, if the data is wholly displayed to all data users, users can directly obtain

the data through copying without purchasing. To avoid this situation, the data

needs to be processed to generate a summary of the displayed data. Part of the

current work is mainly through four ways of data sampling, data version, metadata,

and data summary. Existing platforms usually use manual methods to generate

metadata and summaries. However, in the face of massive amounts of data, the

automatic generation of data display is an important method to improve efficiency

and accuracy. Since the generation of abstracts requires a semantic understanding of

data, it is generally much more complicated than metadata generation. A series of

38

2.3. Challenges and Potential Solutions

works have used machine learning and other methods to generate summaries for text,

audio, images, and videos. In order to provide data summaries faster and better, in

addition to the need to continuously improve the summarization model itself, it is also

necessary to fully consider the execution efficiency of the method on large data sets

and the security of the data, that is, too much valuable information cannot be leaked.

Besides, the demand for personalized abstracts (generating abstracts that meet buyer

needs to increase sales) also increases the difficulty of abstract generation.

2.3.2 Value Assessment and Pricing Model

When we share data as a commodity, we need to give a reasonable estimate and

accurate quantification of the data’s quality and value. Moreover, to protect the rights

and interests of data sharing participants, establish a fair and credible standardized

market, and maintain a healthy data sharing environment, data quality evaluation

and value evaluation are even more essential. The quality evaluation focuses on the

multi-dimensional characteristics of the data content itself, such as completeness,

accuracy, accuracy, consistency, timeliness, etc. The value evaluation is to evaluate

the quality of the data while further comprehensively considering the cost and cost of

the data in the production process—output in different applications. In particular,

the characteristics of easy copying of data and difficulty in controlling distribution

channels make it difficult to return sold data, which further increases the requirements

for accurate and reliable quality and value evaluation of data before sharing. Data

users need to understand the quality and value of the data itself before paying for it,

to select appropriate data, and give a reasonable budget. The data provider needs to

know the quality and valuation of the data to give a reasonable price.

Moreover, strive to improve data quality and enhance data value. Big data sharing

platforms need to monitor the quality and value of data to filter out low-quality

data, prevent malicious quotations from disrupting the market, and at the same

39

Chapter 2. Big Data Sharing: a Comprehensive Survey

time, recommend cost-effective data to users, thereby improving user satisfaction and

platform reputation, and building a healthy market ecology surroundings. Related

research is currently facing many challenges, such as difficulty in the quantitative

evaluation of features, low efficiency in data collection quality evaluation, difficulty in

data cost calculation, difficulty predicting the value of data use, and dynamic changes

in data value. The characteristics of easy data duplication and delicate control of

distribution channels make it difficult to return the sold data, further increasing the

requirements for accurate and reliable quality and value evaluation of pre-sale data.

Current research work generally believes that data quality is a multi-dimensional con-

cept, and different work has proposed a variety of definitions and evaluation methods

for data quality dimensions [165]. Based on existing work, five critical dimensions

have been generally recognized: intrinsic quality, presentation quality, content qual-

ity, accessibility, and reliability.

• Intrinsic quality: basic requirements, designed to measure the quality of the

content itself in terms of capacity, accuracy, completeness, timeliness, unique-

ness, consistency, security, source reliability, etc. This quality dimension mainly

depends on the data source and the process of data collection and processing.

• Presentation quality: is a high-level requirement concerning the data format

(concise and consistent presentation) and data meaning (interpretability and

ease-to-understand).

• Contextual quality: the data must be relevant to the context of the current

decision-making process (task) and suitable for the target application scenario.

• Accessibility: the extent to which the data can be used or retrieved by the

buyer, such as communication costs and delays in data delivery.

• Reliability: refers to the reputation and credibility of the seller and the data

collection source.

40

2.3. Challenges and Potential Solutions

High-quality data should have good inherent quality, clear data representation, easy

access by data consumers, and suitable for specific application scenarios (tasks).

The value of data depends on the quality of the data and is also affected by cost and

market. The value evaluation methods of traditional intangible assets are roughly

divided into cost-based, market-based, and revenue-based. The following is the defi-

nition of data value when these three evaluation methods are used:

• Cost-based: the value of data depends on the cost of collection, processing, and

storage. But data is usually generated as a by-product of information systems,

and production costs are shared with other products. Therefore, it is difficult to

determine the production cost of data, and its production cost is also difficult

to reflect the true value of the data.

• Market-based: the value of data depends on the market price of comparable

data sets in the same market, but the definition of ”comparability” is not clear,

and there are usually no very similar data sets, so accurate valuation is difficult.

• Revenue-based: the value of data depends on the total income that the buyers

can obtain from the data. Such a method is subjective and is only available

when evaluating specific applications. The valuation of different buyers may

vary significantly.

In summary, there is still a lack of models and methods that can accurately assess

the full value of data. Facing the huge volume and various types of data in the data

transaction market, the quality and value evaluation of data still faces the following

challenges:

• Multi-dimensional quantitative evaluation of quality: existing work provides rich

evaluation dimensions of data quality, but many dimensions still use qualitative

analysis and lack specific quantitative models. When facing a large amount of

41

Chapter 2. Big Data Sharing: a Comprehensive Survey

unstructured data, it is very challenging to analyze the content of the data, and

even more challenging to quantify the quality of its content.

• Data collection quality assessment: Most current work assesses data quality for

a single data unit (such as a text, a picture), and there is a lack of methods to

assess the overall quality of the data collection. However, most of the data sets

(such as 10,000 texts and 100,000 pictures) are shared or sold on data sharing

and trading platforms. If the data set’s overall quality is obtained through the

quality statistics of a single data unit, the influence of the relationship between

the data units on the quality of the data set is ignored.

• Dynamic evaluation of data value: Data of different modalities and contents

have different rarity and difficulty in obtaining. How to reasonably evaluate

these factors and combine the quality of the data to form a quantitative estimate

of the overall value of the data is still difficult. Existing data evaluation work

usually focuses on the static quality of data, ignoring the dynamic characteristics

of data value, that is, as data collection and storage devices are updated, data

mining model methods are optimized and updated, and application scenarios

and data consumer needs Change, the value of data is also changing. These

dynamic factors further increase the difficulty of data value estimation.

2.3.3 Security

Generally, security refers to the three main security attributes that need to be ensured

to protect data, namely data confidentiality, integrity and availability [17], also known

as the CIA triad.

Confidentiality: All virtual sensitive data (input, output, and any intermediate

state calculations) are secret to any potentially adversarial or untrusted entities [176].

In other words, confidentiality is the protection of data to prevent unauthorized read

42

2.3. Challenges and Potential Solutions

access. Access control and encryption technology are effective means to ensure data

confidentiality, and both have been extensively studied.

For access control technology, we need to protect data from unauthorized access and

manage authorized users. Generally, in the process of significant data sharing, fine-

grained and flexible access control often needs to meet the following requirements:

• Decide whether there is a limit on the time the user is authorized.

• The user’s authority is divided into the data ownership and right of usage.

• Determine whether the user has the right to re-share the data.

• User permissions can be completely revoked flexibly.

On related issues, Elisa Bertino and Elena Ferrari have conducted some surveys [16],

this article analyzes on this basis, mainly in the following aspects:

• Consolidation and integration of access control strategies: In many cases, the

data set required by data users is not necessarily a single one, which requires the

integration of data sets from multiple possible heterogeneous sources. Therefore,

it is necessary to merge and integrate the access control policies of several

data sources. However, there are some automated or semi-automated strategic

integration systems to resolve conflict issues [105]. However, in data sharing,

allowing data providers to develop their access strategies will become much more

complicated. There may even be cases where access to some data is allowed,

but some obligations are required to travel. Therefore, how to automatically

integrate and merge these strategies is still challenging.

• Authorization management: In the case of fine-grained access control, man-

ual authorization management of large data sets is very consuming human re-

sources. Therefore, we need technology that can automatically grant autho-

rization, possibly based on the user’s digital identity, profile and context, and

43

Chapter 2. Big Data Sharing: a Comprehensive Survey

data content and metadata. Ni et al. took the first step in developing machine

learning technology that supports automatic permission assignment to users

[121]. However, more advanced methods are needed to deal with dynamically

changing contexts and situations.

• Implement access control on big data platforms: With the rise of big data plat-

forms, the sources of users who use data have become more complicated. In

order to effectively implement fine-grained access control to different users, this

brings significant challenges. Although there is some initial work trying to in-

ject access control policies into the submitted work [157], more research is still

needed to study how to effectively implement such strategies in the recently

developed big data storage, mainly If people use fines to enforce access control

policy granular encryption.

In addition to access control, encrypting the data can also effectively ensure the con-

fidentiality of the data. Many encryption techniques can be used to help protect

the security of cloud computing, including functional encryption [20], identity-based

encryption [19], and attribute-based encryption [139]. Among them, attribute-based

encryption can be divided into Key-Policy attribute-based encryption and Ciphertext-

Policy attribute-based encryption. Although data encryption can protect data secu-

rity, this technology is limited by many keys and the complexity of key management.

At the same time, the demand for the computing power of existing encryption schemes

cannot be ignored. Therefore, to share big data, it is still a challenge to design lighter

and more flexible encryption algorithms.

The existing encryption algorithms to ensure data confidentiality mainly include ho-

momorphic encryption (HE). Gentry launched the first fully homomorphic encryption

scheme [56] in 2009. This is a revolutionary cryptographic technology achievement,

but the scheme is too inefficient for any practical use. Since 2009, many researchers

have improved Gentry’s technology, greatly shortening the production time. How-

44

2.3. Challenges and Potential Solutions

ever, in most cases, the speed of fully homomorphic encryption is still too slow. In

addition to inefficiency, homomorphic encryption has other limitations. For example,

homomorphic encryption requires all sensors and the ultimate recipient to share a

key to encrypt the input and decrypt the result, which may be difficult to arrange if

they belong to different organizations. Similarly, homomorphic encryption does not

allow calculations on data encrypted with different keys (without incurring a large

amount of additional overhead), so sensors cannot allow different access to the data

they contribute. Some of these limitations can be solved by other tools, such as the

aforementioned attribute-based encryption and functional encryption. However, ho-

momorphic encryption only guarantees data confidentiality, not integrity. However,

it can be used in conjunction with correct calculations to provide two guarantees.

Integrity: Any unauthorized modification of sensitive data can be detected. Besides,

the output of any calculation on sensitive data is correct (i.e., consistent with the

input data). In other words, integrity means that the data is not subject to any

unauthorized modification. However, with the development of the Internet, people’s

demand for data has increased. Data integrity has been further generalized to data

trustworthiness, which means not only to ensure that unauthorized parties do not

modify the data but also to ensure that the data is error-free, up-to-date, and from

reputable sources. Therefore, ensuring the trustworthiness of data is a tricky issue,

usually depending on the application domain. Its solution requires a combination

of various technologies, from cryptographic technology used to digitally sign data,

access control, checking that only authorized parties modify data to data quality

technology, automatic detection and repair of data errors [9], source technology [150],

used to determine where the data originated, and reputation technology, used to

evaluate the reputation of the data source.

Availability: It is an attribute that ensures that the data is available to authorized

users. It is necessary to ensure that the data obtained by the user is available and

that what the user obtains is the data he requested.

45

Chapter 2. Big Data Sharing: a Comprehensive Survey

Finally, these three requirements are still very critical today, and due to more and

more data collection activities and data sharing, data attacks have become more

complex, and the data attack surface has expanded, so meeting these requirements is

more challenging today.

2.3.4 Privacy

In recent years, with the increase in data demand and the development of significant

data sharing and the CIA’s attributes, privacy has become a new essential require-

ment. The privacy issues discussed in this article are mainly divided into two aspects:

data privacy and user privacy.

Data privacy: So far, many definitions of data privacy have been proposed. More-

over, with the development of means of obtaining personal information, privacy has

also developed over time. Samuel Warren and Louis Brandeis published an article

[166] published in 1890, in which the concept of privacy was systematically written

for the first time In one of the discussions, they defined privacy as the ”right to be

isolated.” Nowadays, one of the most commonly used definitions of data privacy is Al-

lan Westin’s definition of data privacy as ”individuals, groups, or organizations that

require themselves to determine when, how, and to what extent information about

them Convey the claims to others” [167].

Data privacy is generally regarded as the same requirement as data confidentiality.

However, there are some differences between these two requirements. Data privacy

does need to ensure the confidentiality of data because if data is not protected from

unauthorized access, privacy cannot be ensured. However, due to the need to consider

the requirements of laws and privacy regulations and personal privacy preferences,

privacy has other issues. For example, the purpose of data sharing is critical when

dealing with privacy, because it may be a good thing for one person to share their

data for research purposes, while another person may not. Therefore, systems that

46

2.3. Challenges and Potential Solutions

manage privacy-sensitive data may have to collect and record individuals’ privacy

preferences to whom the data refers. Also, data subjects may change their privacy

preferences over time. Therefore, in order to solve the privacy problem, the system

not only needs to implement the access control policy that the organization may have

to control access to data but also needs to implement the preferences and laws and

regulations of the data subject, among other things.

In addition to effective access control strategies, data encryption technology is also

particularly important. This is because big data privacy management usually relies on

the cloud platform. The primary issue for implementing privacy management under

the cloud platform is the security of storage, computing on encrypted data, and com-

munication. Data encryption technology meets this demand. Specific applications

under cloud platforms usually depend on data storage, indexing and retrieval, and

the credibility provided by cloud platforms. The homomorphic encryption and func-

tional encryption mentioned in data confidentiality are standard methods to protect

individual data privacy. Hu et al. [69, 68] respectively proposed key-value privacy

storage methods and multi-level index processing technologies using homomorphic

encryption technology to ensure that neither the data owner nor the cloud platform

can be identified during the node retrieval process of the user query out of any node.

Whether it is encryption technology or access control, both are designed to design

heuristic protection methods against current external attacks. In the face of new at-

tacks, it is necessary to reformulate protection methods. In the big data environment,

these two methods are not universally applicable due to the lack of a strong math-

ematical foundation to define data privacy and loss. The emergence of differential

privacy [43][44][46][47][45] makes up for this gap. This model is a new and robust

privacy-protection technology supported by mathematical theory. According to the

formal definition of differential privacy, this method controls the degree of privacy

protection and the size of privacy loss by privacy parameters, which can ensure that

the operation of inserting or deleting a record in a data set will not affect the output

47

Chapter 2. Big Data Sharing: a Comprehensive Survey

of any calculation. Also, this method does not care about the background knowledge

of the attacker. Even if the attacker has mastered the information of all records ex-

cept a certain record, the privacy of the record cannot be disclosed [184]. This feature

makes the difference Privacy technology has good scalability. Differential privacy has

become the current research hotspot of privacy protection technology. The academic

community believes that differential privacy has a natural match with big data. The

reason is that the large-scale and diversity of big data makes the addition or deletion

of a data point in the data set have a minimal impact on the overall data. This

characteristic is related to the difference. The definition of privacy coincides with

the connotation. Nevertheless, the disadvantages of differential privacy protection

technology include the inability to actively control privacy parameters. Small privacy

parameters lead to low availability and high privacy, and vice versa, high availability

and low privacy. Therefore, this parameter is difficult to control. The correlation

between big data may weaken the effect of differential privacy protection.

To better protect the privacy of data, searching directly on the ciphertext is also an

effective way to protect data privacy. The ciphertext retrieval processing technology

is divided into symmetric encryption [85] and public-key encryption method [1, 135].

Among them, Kamara et al. [85] proposed an asymmetric encryption method that

supports dynamic retrieval, which has Higher security and retrieval efficiency. Abdalla

et al. [1] proposed searchable public-key encryption technology and support keyword

retrieval; while Rhee et al. [135] proposed against Abdalla et al. [1]. The problem

of secure channels and consistency, a public-key encryption scheme based on random

prediction models, and unsecured channels is proposed. Also, functional encryption

allows us to learn the information implicit in the ciphertext when processing the key.

Also, the privacy information retrieval technology [32] is usually used for query se-

curity when outsourcing data. Users can query any data on an untrusted service

platform without revealing sensitive information of the queried data. The queried

data can be public and anonymous, but the service platform cannot identify its spe-

48

2.3. Challenges and Potential Solutions

cific content. Although the aforementioned encrypted search technology can also

control the query, the query’s complexity and computational overhead make this

type of technology not practical. The technology to realize privacy retrieval usually

includes two types: retrieval methods based on information theory and computable

retrieval methods based on hardware. Among them, the retrieval method based on

information theory [32] is usually to pass all the data to the client and allow it to be

decoded locally. However, due to the transmission cost, this technique is not suitable

for big data. Computational retrieval methods based on hardware are currently more

commonly used especially in DNA sequence matching, content-based image retrieval,

and location privacy queries. Although privacy information retrieval technology has

promoted the development of security software and hardware, the application of this

technology will be more difficult and complicated in the big data environment.

User privacy: In addition to the accidental protection of data privacy, the identity

information of data users and data providers also needs to be protected. This is the

issue of user privacy. In terms of protecting user privacy, anonymization technology

and all encryption signature technologies are commonly used.

Anonymization refers to hiding or obscuring data and data sources. This technol-

ogy generally uses operations such as suppression [163], generalization [52], analysis

[174], slicing [102], separation [155], etc. to operate anonymous data. k-anonymous

[152] is the new representative method of this technology. When publishing relational

data, this method requires that each generalized equivalence class contains at least

k pieces of mutually same data, that is, it requires one piece of data to represent

Personal information is at least indistinguishable from other k-1 pieces of data. How-

ever, the disadvantage of k-anonymity is that it does not restrict the equivalence

class’s sensitive attributes, which leads to the failure of the technology. For exam-

ple, any sensitive attribute in a certain equivalence class takes. If the value is the

same, the attacker can infer the sensitive value. Unlike k-anonymity, the l-diversity

[115] method ensures that each equivalence class contains at least l different sensitive

49

Chapter 2. Big Data Sharing: a Comprehensive Survey

attribute values when anonymizing relational data. Although l-diversity guarantees

the diversity of sensitive attributes but ignores the global distribution of sensitive at-

tributes, and the attacker may confirm the sensitive value with a high probability. To

make up for the shortcomings of the l-diversity method, the t-closeness [100] method

requires that the distribution of sensitive attribute values in all equivalence classes is

consistent with the global distribution of the attribute. Also, minvariance [175] and

HD-composition [22] fill up k-anonymity, l-diversity, and The t-closeness method is

only suitable for the shortcomings of static relational data to ensure that the privacy

of data is not leaked when the data is released dynamically or incrementally. Com-

pared with the anonymization problem mentioned above, the anonymization of big

data is more complicated. In big data, The integration and fusion of multi-source

data and correlation analysis make the above passive protection methods for small

data invalid. Compared with the current privacy management framework, the tra-

ditional anonymity technology has the disadvantage of passively preventing privacy

leakage, combined with a single data set. The attack assumes that to formulate the

corresponding anonymization strategy. However, the large-scale and diversity of big

data makes traditional anonymization technologies lose sight of the other.

In addition, secure multi-party computing [158, 144], as a commonly used encryption

method, can also guarantee the privacy of users. Secure multi-party computing’s

core operation is to calculate the corresponding function value based on the data

provided by the multi-party participants in a distributed environment and to ensure

that in addition to the input and output information of the participants, no additional

information of the participants is exposed. The technology is often used in the field of

data mining [158] for privacy protection in a distributed environment, and gradually

expanded to the fields of undirected product [42] and adding vector [159]. Also, ring

signatures, zero Techniques, such as zero knowledge proof, are well used for user

privacy protection.

Although the above research provides specific ideas for big data privacy management,

50

2.3. Challenges and Potential Solutions

the flaws of this technology are obvious. Like anonymization technology, this type

of technology is also passive protection against the privacy of certain types of data.

Moreover, in the big data environment, Its large-scale, diversity, and other charac-

teristics make this type of technology fall into a cyclical cycle. In the face of privacy

leakage of new applications, new encryption methods must be used to protect it.

2.3.5 Data Traceability and Accountability

In an ethical and sustainable data trading market, the traceability of data dissem-

ination after the transaction is completed very importantly to the reliability of the

entire system. It determines the user’s satisfaction and trust in the system. In the

process of significant data sharing, it is not just the sharing process that needs to be

paid attention to. It is also essential to trace the data after sharing. However, it is

challenging to design a traceable data sharing mechanism.

First, it is difficult to guarantee the traceability of data because attackers may take

arbitrary measures to avoid data being tracked and identified during propagation.

Second, plagiarism is difficult to detect because users may modify a small part of

the data and then list it as a ”new” data set. Finally, it is difficult for data agents

to detect illegal data transactions offline. In order to solve these problems, many

researchers have made efforts in recent years. One method is to introduce a third-

party trusted institution to supervise all shared transactions, add a watermark to each

transaction’s data, and verify the existing watermark of the data before allowing the

operation of the data used to check whether the sharing rules are violated. However,

collusive users and offline data circulation can bypass surveillance. At the same time,

for data plagiarism detection, Jung et al. [83] designed related technologies. In order

to consider the originality of the data, they defined the originality index of various

data types and verified the effectiveness of this indicator by experiments. Some tools

can be used for data tampering detection and data duplication, such as Merkle trees,

51

Chapter 2. Big Data Sharing: a Comprehensive Survey

digital signatures, and local sensitive hashes.

Many existing data transaction platforms claim to have used blockchain technol-

ogy for data traceability due to the emergence and rapid development of blockchain

technology. This takes advantage of the non-tamperable, traceable, and trustworthy

features of distributed data storage in the blockchain. The classic blockchain, that

is, the blockchain used by Satoshi Nakamoto in the Bitcoin system in 2009, combines

asymmetric encryption, digital signatures, Merkel trees, proof of work, and other

technologies. The safe and reliable record of transfer information in the absence of

a trusted center provides a complete solution. Then, the researchers made different

modifications and additions to the classic blockchain to adapt it to various information

sharing and recording requirements in different scenarios. In 2013, Vitalik Buterin

(Vitalik Buterin) proposed an open-source, public blockchain platform with smart

contract functions—Ethereum. Retaining the payment and transfer functions of the

previous Bitcoin blockchain provides an open, modular platform that supports custom

advanced applications. Ethereum supports users to edit the applications they want,

that is, smart contracts. The calling process and return result of the contract are

recorded in the underlying blockchain, which is equally safe, reliable, and immutable.

Researchers have proposed a variety of possible data transactions and traceability

solutions based on the blockchain and related technologies. For example, by building

an underlying blockchain, the essential functions of distributed data transactions can

be completed. Alternatively, by establishing a unique data file contract for each piece

of data, and record the relevant information of the data in the file contract bound to

it, and the sale of the data is realized by calling different functions of the file contract.

The content will be retained. The label information and data copyright are recorded

on the chain, and the immutability of the information on the chain is used to realize

the anti-counterfeiting and copyright confirmation of the data. The data transaction

intermediary can establish a contract warehouse locally, organize the disordered con-

tracts on the chain in an orderly manner, and achieve efficient services through the

52

2.3. Challenges and Potential Solutions

combination of on-chain and off-chain.

However, in addition to data piracy, the data being traded may also be leaked through

offline copies. Because the data owner may hold a copy or slightly modified version of

the data, and may also transfer the data to other storage devices or others. Since the

data itself is easy to copy, change, and transfer, these risks of infringement cannot be

eliminated. These risks also exist in existing digital goods, such as e-books, music,

and movies. Existing digital rights management protects the copyright of digital

goods through encryption and the development of dedicated software and hardware.

For example, users can only use specific software to view e-books or listen to music

and not allow downloading and use product keys to limit the number of software

installations. Methods such as continuous online identity verification automatically

detect piracy. In data transactions, sending plaintext data directly to buyers will

result in unrecoverable infringement losses, so we must use DRM technology to restrict

the use, download, and dissemination of data. The existing DRM technology is not

perfect enough. In order to better adapt to significant data sharing, the following

improvements need to be made:

• High-speed real-time online access: Data access is not continuous like streaming

media, and may be arbitrary, so the efficiency and speed of online access need

to be improved.

• Improvement of dedicated software: Existing dedicated software with copyright

management generally only allows users to browse (such as watching videos and

listening to music). In data transactions, such software must not only support

browsing, but also allow buyers to calculate and visualize data.

• Function restriction mechanism: Some software needs to prohibit the screen

capture function and use some mechanisms to prevent buyers from taking pic-

tures or videos of the screen and indirectly infringing.

53

Chapter 2. Big Data Sharing: a Comprehensive Survey

• Infringement detection: It is not only necessary to use product keys and con-

tinuous online identity verification to prevent infringement, but also to detect

whether infringement has occurred, for example, recording the sending and

receiving devices when data is transmitted, and combining the copyright re-

strictions in the data transaction contract , The software should automatically

determine whether the buyer has infringed, and if so, it should punish the buyer

by disrupting the data or completely banning the use.

2.3.6 High Quality of Service

There are multiple services on the network that will generate a large amount of data,

and these data are significant. Many users around the world may be interested in

data generated on the other side of the world. As the Internet provides a universal

infrastructure, sharing scientific data for scientific research and engineering data for

manufacturing has also become a modern trend [153]. Therefore, it is necessary to

deliver big data on the network to users according to their needs. This is the concept

of big data services.

Existing big data services are challenging to meet the needs of hardware and software,

so how to develop high-performance big data services is an urgent problem to be

solved. The main challenges in this regard are as follows:

• Offline storage device: hard disk drives with random access technology are

limited for data storage, especially for fast input and output transmissions that

require big data processing [86]. While robust state equipment (SSD) [72] and

phase-change memory (PCM) [128] are more advanced technologies, they are

far from reality.

• Management algorithm design: management algorithm design: There may be

algorithm design limitations in defining appropriate data structures suitable for

54

2.4. Promising Applications

fast-access data management. We need to optimize the design and implemen-

tation of the index to access the data [31] quickly.

• Data transmission security: for big data services, communication is almost

essential because data collection and service delivery are usually carried out on

the Internet. Big data services require large bandwidth for data transmission.

There is always the possibility of data loss during transmission. In this loss

situation, maintaining data integrity is a challenge [164]. More importantly,

there are always data security issues [125].

• Powerful computing power: as the scale of data expands, the demand for com-

puting power increases exponentially. Although Moore’s Law doubles the pro-

cessor’s clock cycle frequency, the clock speed is still far behind the demands.

Therefore, mighty computing power has become part of the demand for high-

quality big data services. Both data sharing and analysis require high compu-

tation power.

• Timeliness of services: ensuring the timeliness of big data services is a ma-

jor challenge. This not only requires high computing power, but also requires

innovative computing architecture and powerful data analysis algorithms.

2.4 Promising Applications

In this section, we introduce two promising applications of big data sharing in recent

years, i.e, healthcare and data trading. The two applications have been attracting

extensive attention from both the industry and academia.

55

Chapter 2. Big Data Sharing: a Comprehensive Survey

Table 2.2: Categorization of healthcare big data

Category Type Description Sources

Research Clinical trails Design parameters and results of clinical trials Medical organiza-

tions

Medical apparatus Design and operational guidance of medical ap-

paratus

Manufacturers

Clinical Electronic health

records

A systematized collection of patient and popu-

lation electronically-stored health information,

e.g., demographics, medication, medical his-

tory, and immunization status

Hospitals & clinics

Medical diagnosis Results of various diagnostic tests, e.g., tissue

samples, blood samples, and imaging scans

Hospitals & medical

centers

Biomarkers Molecular data, e.g., genome, transcriptome,

proteome, and metabolome

Hospitals & biotech-

nology companies

Administrative data Admission, discharge, transfer, payment, etc. Hospitals & clinics

Claims Medical claims Reimbursement data from medical claims, e.g.,

procedures, medications, and hospitalization

Hospitals & payers

Prescription claims Reimbursement data from prescription claims,

e.g, drug, dose, and duration

Hospitals & Pharma-

cies

Individuals Social media data Textual data from various social medias and

communities, e.g., Sermo and Facebook

Social media compa-

nies

IoT data Environmental data and lifestyle data from var-

ious IoT devices, e.g., smart watch and smart

sphygmomanometer

Individuals

56

2.4. Promising Applications

2.4.1 Big Data Sharing for Healthcare

Healthcare has always been important to the society. Illness, accidents, and emer-

gencies do arise every day, and the incurred ailments and diseases are supposed to be

diagnosed, treated, and managed. There are a significant amount of invaluable health

data generated everyday, e.g., the electronic health records (EHRs) in hospitals, clin-

ical trials in medical research organizations, and daily health data of individuals from

smart homes. Table 2.2 gives a categorization of the healthcare big data. Big data

sharing can make these data to be interoperable and benefits healthcare a lot. In

2020, the U.S. National Institutes of Health, the largest global funder of biomedical

research, is finalizing a supportive policy for healthcare data sharing [146].

First, big data sharing can enhance the understanding of each individual hospitalized

case. When a hospital receives a new patient especially with some unusual symptoms,

it is important for the doctors to refer to the past cases with similar circumstances.

Moreover, the historical EHRs of the patient is also useful for disease diagnose. Big

data sharing, which is termed as healthcare information exchange (HIE) in the medical

field, has been popular for acquisition of EHRs by one hospital from another [79].

Besides, the exchange of EHRs helps the doctors to have a better understanding of

different cases and diseases.

Furthermore, big data sharing benefits the discovery of scientific insights, e.g., disease

prediction and therapeutic regimen, through aggregating and analyzing clinical trials.

In recent years, machine learning-based medical data analysis has been attracting ex-

tensive attentions from the governments, industry, and academia [106]. The machine

learning approaches demand a large number of data as input, which can be hardly

provided by a single medical organization. As a result, aggregation of the clinical

trials is important, which can be achieved by big data sharing.

Finally, sharing smart home data makes significant contributions to precision medicine.

With the development of IoT technology, smart IoT devices for healthcare becomes

57

Chapter 2. Big Data Sharing: a Comprehensive Survey

common in daily life of the human beings, e.g., smart watches to monitor the heart

rates and smart sphygmomanometers to measure the blood pressure. The numerous

personal health data is useful for precision medicine [33]. That is, the doctor takes the

individual variability in environment and lifestyle into consideration when conducting

disease treatment or giving prevention advice.

Historial EM
Rs

of the Patient

Symptoms

EHRs w
ith

Sim
ila

r S
ymptoms

Disease

Diagnosis

Result

Precision

Medicine

Hospital

Hospital

Patient

Smart Home

Personal
Health Data

Clinical

Trials

Medical Organizations

Disease

Diagnosis

TherapeuticRegimen Big Data Sharing

Figure 2.9: Big data sharing for healthcare

Figure 2.9 demonstrates an example case study of the application of big data sharing

in healthcare. In particular, the clinical trials are shared among the medical orga-

nizations for a better investigation of the existing diseases together with the novel

therapeutic regimens. Moreover, the hospitals diagnose the diseases of the patients

based on the historical EHRs of the patients, the symptoms, and the EHRs with

similar symptoms. Finally, precision medicine can be applied to the patients with the

help of the personal health data generated from smart home.

2.4.2 Big Data Trading

In recent years, big data trading has become an emerging business model because of

the great value and high demands for big data. Both the industry and academia have

58

2.5. Chapter Summary

been investigating the possible approaches for big data trading. In big data trading,

the commodity is special, i.e., big data, and the traders are large-scale enterprises

and organizations in general.

From the perspective of the industry, Xignite8 targets for a convenient market for

trading big data from the financial institutions and Fintech (financial technology)

firms, Gnip.9 provides an aggregation of the social media APIs for the users to

collect big data, Amazon releases the product AWS Data Exchange as mentioned

in Section 2.2.1 to link the big data providers and users. In China, a bunch of big

data trading platforms were established with the support from the government e.g.,

Guiyang Global Big Data Exchange (GBDEx)10 and Shanghai Data Exchange Corp.

(SDE)11 were established in 2014 and 2016, respectively.

Besides the various commercial platforms from the industry, there are an increasing

number of research works that tackles the challenges of developing big data trading

platforms. Zheng et al. considers the balance between online data pricing and reward

sharing and presents the first architecture of mobile crowd-sensed big data market

[188]. Oh et al. proposes proposes a competitive big data trading model consisting of

multiple data providers who weigh the value between privacy protection and valuation

[124]. Zhao et al. studies how the variety of big data affects the behaviors of the

content providers and Internet service providers under the sponsored data plan [186].

2.5 Chapter Summary

Big data sharing, which refers to refers to the act of the data sharers to share big

data so that the sharees can find, access, and use in the agreed ways, is the key

8Xignite: We Make Market Data Easy
9Gnip Homepage

10GBDEx: Global Big Data Exchange
11Shanghai Data Exchange Corp.

59

https://www.xignite.com/
https://support.gnip.com/
http://www.gbdex.com/website/
https://www.chinadep.com/

Chapter 2. Big Data Sharing: a Comprehensive Survey

for transition from data islands to data ecosystem and articulating the value of big

data. This chapter presents the first comprehensive survey of big data sharing. We

explain the basics of big data sharing, i.e., definition, general procedures, benefits,

and requirements. Moreover, we study the existing big data sharing platforms with

categorization based on the system architecture. Moreover, the challenging issues

are identified with explanation of the possible solutions. Finally, we present the

representative applications of big data sharing. We believe this survey will give the

audiences a full view of big data sharing and stimulate future research.

60

Chapter 3

Fairness-based Transaction Packing

Generally, a blockchain is an append-only list of blocks, each of which includes a set

of transactions, managed by a peer-to-peer network adhering to a protocol for inter-

node communication and validating new blocks [66]. The magic of blockchain lies

in the protocol of validating new blocks, i.e., consensus mechanism. In permissioned

blockchains, the consensus mechanism is performed round by round, and each round

consists of three phases, i.e., leader election, transaction packing, block propagation.

To begin a round, all the blockchain nodes run the same leader election algorithm

to elect a transaction packer. Then, the packer selects several transactions from its

memory pool and pack them into a block. Finally, the generated block is broadcast

to the network, and the transactions in the block get confirmed.

Blockchain can be regarded as a service for data storage. In particular, the users send

the data, or transactions, to the blockchain, and receive the operational results, i.e.,

acceptance or rejection. To improve the quality of service, the research communities

have been attempting to propose more efficient [57] and reliable [108] algorithms for

leader election. Since the throughput of blockchain is limited, the blockchain service

is supposed to be fairly shared among multiple users. In permissionless blockchain,

the users pay fees, in forms of native cryptocurrencies, for their transactions. The

61

Chapter 3. Fairness-based Transaction Packing

nodes strategically pack those transactions with high transaction fees into a block

to earn more monetary rewards. The fairness among the users is naturally achieved

because the transactions with higher transaction fees tend to be served first.

The fairness in permissioned blockchain differs due to the lack of native cryptocur-

rencies and transaction fees. In this chapter, we consider fairness in permissioned

blockchain from the perspective of transaction response time. For each transaction,

its response time is the duration from its submission to the time when a block con-

taining this transaction is confirmed. A permissioned blockchain is considered to be

fair if the response times of the transactions are close to each other. That is, the

transactions which are submitted first are expected to be packed into blocks first.

Unfairness leads to a high deviation of the transaction response times. As a result,

the transactions incurring long delays will suffer from undesirable quality of experi-

ence. More seriously, some transactions get timeouts and discarded if their response

times exceed a certain period. In time-sensitive applications, e.g., energy trading [99]

and manufacturing operation [98], the discarded transactions can lead to income loss

and even safety issues.

Little attention has been paid to the fairness issue in permissioned blockchain al-

though it is vital. Transaction packing is the key to enhance the fairness because it

directly decides which transactions are packed into blocks. The first idea is possibly

first-come-first-serve (FCFS) [143]. In permissioned blockchain, the FCFS strategy

is to select the transactions with long waiting times and pack them into a block.

However, the selected subset of transactions can be invalid to be packed into a block.

For example, one transaction cannot be packed if its dependent transactions are not

confirmed yet. On this circumstance, the next choice is supposed be generated by the

transaction packing algorithm while FCFS strategy fails. In existing permissioned

blockchains, transactions are arbitrarily packed into blocks. An intuitive approach is

to choose subsets one after another randomly. This approach cannot achieve prefer-

able fairness since transactions with long waiting times are not considered first. In

62

conclusion, traditional FCFS strategy fails to continuously generate subsets of trans-

actions, and the random strategy cannot achieve satisfactory fairness.

In this chapter, we propose Fair-Pack, a fair transaction packing algorithm for

permissioned blockchains. First, we quantify the fairness according to Jain’s fair-

ness index [74] of response times, and define the fairness problem in permissioned

blockchains formally. Then, we gain the insight that fairness is positively related to

the sum of waiting times of the selected transactions. In this way, we transform the

fairness problem into the subset sum problem, which is to find a valid subset with

subset sum as large as possible. However, the number of subsets of a given set is

exponential, which makes it non-trivial to solve the subset sum problem. We divide

the subset sum problem into two individual problems depending on the relationship

between the maximum size of the subset and the size of the given set. Furthermore,

we figure out the partial/global orders of the subsets according to the subset sum,

and propose a heuristic algorithm and a min-heap-based algorithm to solve the two

problems separately. Finally, we analyze the time complexity of Fair-Pack and

extensively evaluate its performance in terms of fairness and average response time.

Based on the experiments, we conclude that Fair-Pack not only achieves better

fairness, but reduces the average response time as well. The main contributions of

this chapter are as follows:

• We define the fairness problem in permissioned blockchain. We propose an

overall transaction packing algorithm Fair-Pack and transform it into two

subset sum problems via theoretical analysis. To the best of our knowledge, this

is the first work on the transaction fairness problem in permissioned blockchain.

• Inside Fair-Pack, we propose a heuristic and a min-heap-based optimal algo-

rithm to solve the two subset sum problems separately. The performance and

time complexity of the two algorithms are formally analyzed.

• We carry out extensive experiments on how the performance of Fair-Pack is

63

Chapter 3. Fairness-based Transaction Packing

influenced by the transaction incoming rate, block generation time, block size,

and block validity ratio. The results indicate that Fair-Pack achieves better

fairness and less average response time compared to the existing works.

The rest of this chapter is organized as follows. Section 3.1 introduces the system

model and defines the fairness problem in permissioned blockchains. In Section 3.2,

we present the overall algorithm Fair-Pack, and transform the original fairness

problem into two subset sum problems SM-Sum and LM-Sum. Then, we propose a

heuristic algorithm Sum-Index to solve SM-Sum in section 3.3 and a min-heap-based

optimal algorithm Min-Heap-Op to solve LM-Sum in section 3.4. Furthermore, we

analyze the time complexities of the algorithms in section 3.5 and conduct extensive

experiments to evaluate the performance of Fair-Pack in section 3.6. The related

work is discussed in section 3.7. Finally, section 3.8 concludes this chapter.

3.1 System Model and Problem Statement

In this section, we first introduce the system model of permissioned blockchain. Then,

we define the fairness problem in permissioned blockchains with concrete explanations

of the input, assumptions, and objective.

The block generation in a permissioned blockchain proceeds round by round as shown

in Figure 3.1. At the beginning of each round, the blockchain network runs the leader

election algorithm to elect a leader, node i. Then, node i invokes transaction packing

algorithm to select a subset of transactions from its local memory pool and pack

them into block i. Finally, block i is propagated in the blockchain network through

broadcasting. From the perspective of the users, they submit their transactions to a

random node in the blockchain network. Upon receiving the transactions, the node

stores them in the local memory pool and broadcast the transactions to other nodes.

Because broadcasting incurs network delay, the memory pools for different nodes may

64

3.1. System Model and Problem Statement

be different.

Block i

Transaction Pool

of node i

Header

Transactions

...

TxTx

Tx

Tx
Tx

Tx

TxTx

Tx

Tx
Tx

Node i

Node i

Block i

Node i

Block

Propagation

Leader

Election

Transaction Packing

Figure 3.1: Block generation of permissioned blockchains

The waiting time and response time of a transaction are defined as follows.

Definition 1. Suppose a transaction xi is submitted to blockchain network at time

si and xi is in memory pool at the current time tc, then the waiting time of xi is

ai = tc − si.

Definition 2. Suppose a transaction xi is submitted to the blockchain network and

packed into blocks at time si and ei, respectively, then the response time of xi is

ti = ei − si.

As the permissioned blockchain runs round by round, there are more and more trans-

actions packed into blocks. This chapter studies the fairness according to Jain’s

65

Chapter 3. Fairness-based Transaction Packing

fairness index [74]. Note that the fairness index is between 0 (exclusive) and 1 (in-

clusive). A larger fairness index means better fairness and the fairness index equals

to 1 if the response times of all the transactions are the same.

Definition 3. Suppose there are n transactions X = {x1, · · · , xn} packed into blocks

with response times t1, · · · , tn, then the fairness among the n transactions is defined

as: J (X) =
(Σn

i=1ti)
2

n·Σn
i=1t

2
i

.

To maximize the overall fairness, we should consider not only the response times of the

transactions in blocks but also the waiting times of the transactions in memory pool.

However, the number of transactions in blocks increases infinitely as the permissioned

block runs, which hinders the development of a time-efficient transaction packing

algorithm. In this chapter, we only consider the waiting times of the transactions in

memory pool in a single round and the expected fairness of a given packing strategy.

Definition 4. Suppose there are n transactions X , the maximum number of trans-

actions in a block is k, and the time to make a packed block to be committed is r.

Consider a packing strategy which packs a subset X ′ of transactions into a block in a

round. Suppose the waiting times of X ′ in the round are s1, · · · , sl and the waiting

times of the remaining transactions X \ X ′ are t1, · · · , tm, where l + m = n, l < k,

and t1 ≥ · · · ≥ tm. Then, the expected fairness of the packing strategy in the round is

defined to be:

J (X) =
(Σl

i=1(si + r) + Σm
i=1(ti + r + d i

k
e · r))2

n · (Σl
i=1(si + r)2 + Σm

i=1(ti + r + d i
k
e · r)2)

(3.1)

In short, the expected fairness assumes that the remaining transactions in the memory

pool are packed into blocks in FCFS order. To this end, we aim at finding a packing

strategy with the maximum expected fairness in each round, which is formally defined

as follows:

Definition 5. Problem Ori-Fair: Given 1) a set of n transactions X in memory pool

at time tc with submission times s1, · · · , sn, respectively and 2) the maximum number

66

3.1. System Model and Problem Statement

k of transactions that can be packed into a block, assuming 1) a leader is already

elected for transaction packing, 2) a subset of X can be valid or invalid to be packed

into a block, and 3) the validity of all subsets of X are unknown before generation, we

aim to develop a transaction packing strategy to continuously generate subsets of X

until a valid subset is generated with the expected fairness J (X) as large as possible.

In the problem, the maximum number of transactions that can be packed into a

block is given as k. The reason why k is bounded is that a large value of k leads to

high network congestion when the block is propagated in the network. For example,

the value of k in Bitcoin is around 3, 000 due to the limit of block size and average

transaction size. In this chapter, we consider k as an adjustable parameter.

In the following, we explain the reasonability of the assumptions. First, leader election

and transaction packing are conducted in sequence. As a result, we can use existing

leader election methods, such as [89] and [48], to select a transaction packer to fit

assumption 1). Second, a subset of transactions can be invalid to be packed into

a block for various reasons, e.g., one transaction cannot be packed if its dependent

transactions are not confirmed yet. Finally, we assume the validities of all subsets of

transactions are unknown before the generation to separate transaction packing with

block verification. The separation makes the transaction packing algorithm to be an

independent component, which makes the blockchain system more modularized.

Our target is to develop a fair transaction packing algorithm. The algorithm is sup-

posed to continuously generate subsets of transactions because a subset of transactions

can be invalid and its validity is unknown in advance.

67

Chapter 3. Fairness-based Transaction Packing

3.2 Fair-Pack: a Fairness-based Transaction Pack-

ing Algorithm

In this section, we prove that the fairness index is positively related to the sum of

waiting times of the packed transactions in Ori-Fair. Then, the proved property is

used to transform Ori-Fair into the subset sum problem. Finally, we propose an

overall solution Fair-Pack towards solving Ori-Fair.

Theorem 1. Given a set of n transactions x1, · · · , xn in pool with waiting times

a1, · · · , an, respectively and k transactions are supposed to be packed, in each round,

the larger the sum of the waiting times of the packed transactions, the larger the

fairness of the packing strategy.

Proof. Consider two permutations σ and τ of (1, · · · , n), where σ = (σ1, · · · , σn) and

τ = (τ1, · · · , τn). The two packing strategies σ-Pack and τ-Pack pack transactions

in the order of (xσ1 , · · · , xσn) and (xτ1 , · · · , xτn), respectively.

Assume by contradictory that σ-Pack packs transactions with larger sum of waiting

times in each round while τ-Pack achieves larger fairness. By definition, we have the

following properties:

Σk
i=1aσi > Σk

i=1aτi (3.2)

∀2 ≤ j < dn
k
e,Σjk

i=1aσi ≥ Σjk
i=1aτi (3.3)

Σn
i=1aσi = Σn

i=1aτi (3.4)

Notate the time to commit a packed block as tp. Then the transaction response times

using σ-Pack are aσ1 + tp, aσ2 + tp, · · · , aσk+1
+2tp, · · · , aσn +dn

k
e · tp. The transaction

response times using τ-Pack are aτ1 + tp, aτ2 + tp, · · · , aτk+1
+ 2tp, · · · , aτn + dn

k
e · tp.

To this end, the fairness of σ-Pack and τ-Pack and their relationship are as follows:

Jσ−Pack =
(Σn

i=1(aσi + d i
k
e · tp))2

n · Σn
i=1(aσi + d i

k
e · tp)2

(3.5)

68

3.2. Fair-Pack: a Fairness-based Transaction Packing Algorithm

Jτ−Pack =
(Σn

i=1(aτi + d i
k
e · tp))2

n · Σn
i=1(aτi + d i

k
e · tp)2

(3.6)

Jτ−Pack > Jσ−Pack (3.7)

Since the algorithms are running on the same set of transactions, we have

Σn
i=1a

2
σi

= Σn
i=1a

2
τi

(3.8)

Σn
i=1(aσi + d i

k
e · tp) = Σn

i=1(aτi + d i
k
e · tp) (3.9)

According to Equation 3.5,3.6,3.7,3.9, we have:

Σn
i=1(aσi + d i

k
e · tp)2 > n · Σn

i=1(aτi + d i
k
e · tp)2 (3.10)

Expand Equation 3.10, we get:

Σn
i=1a

2
σi

+ Σn
i=1(d i

k
e · tp)2 + 2Σn

i=1(aσi · d
i

k
e · tp) >

Σn
i=1a

2
τi

+ Σn
i=1(d i

k
e · tp)2 + 2Σn

i=1(aτi · d
i

k
e · tp)

(3.11)

According to Equation 3.8,3.11, we have:

Σn
i=1(aσi · d

i

k
e) > Σn

i=1(aτi · d
i

k
e) (3.12)

Adding Equation 3.2 and all the inequations in Equation 3.3, we have

Σ
dn
k
e−1

i=1 Σik
j=1aσj > Σ

dn
k
e−1

i=1 Σik
j=1aτj (3.13)

Adding the inequations in Equation 3.12 and Equation 3.13, we have:

dn
k
eΣn

i=1aσi = Σ
dn
k
e−1

i=1 Σik
j=1aσj + Σn

i=1(aσi · d
i

k
e)

> Σ
dn
k
e−1

i=1 Σik
j=1aτj + Σn

i=1(aτi · d
i

k
e)

= dn
k
eΣn

i=1aτi

(3.14)

It is clear that Equation 3.14 is contradictory to Equation 3.4. As a result, the

assumption does not hold and σ-Pack achieves larger fairness than τ-Pack.

69

Chapter 3. Fairness-based Transaction Packing

According to Theorem 1, it achieves better fairness to pack transactions with the

larger sum of waiting times. Therefore, the best strategy is to pack transactions

with top-k waiting times, which is FCFS. However, such a transaction subset can

be invalid and we need to continuously generate transaction subsets. According to

Theorem 1, the sum of waiting times can be treated as the heuristic to generate

transaction subsets. That is, we are supposed to find the transaction subset with the

1-st, 2-nd, · · · , m-th largest sum of waiting times.

Because the transaction waiting times are known real numbers, the problem is to find

a subset of no more than k elements from a set of n real numbers with the m-th

largest subset sum among all the feasible subsets. Here, the feasibility means the

subsets contain no more than k elements. If k is smaller than n, there are Σk
i=0

(
n
i

)
feasible subsets. Similarly, there are 2n ones if k is no smaller than n. In this chapter,

we consider the two conditions separately with problem statements as follows.

Definition 6. Problem SM-Sum: Given a set of n positive real numbersW, a positive

integer k where k < n, and a positive integer m where m ≤ Σk
i=0

(
n
i

)
, there are Σk

i=0

(
n
i

)
distinct subsets of W of size no larger than k. Among the subsets, find the one with

the m-th largest sum.

Definition 7. Problem LM-Sum: Given a set of n positive real numbersW, a positive

integer k where k ≥ n, and a positive integer m where m ≤ 2n, there are 2n distinct

subsets of W of size no larger than k. Among the subsets, find the one with the m-th

largest sum.

If the problems SM-Sum and LM-Sum are solved, then the problem Ori-Fair can

be solved by Algorithm 1.

In Algorithm 1, we assume that the problem SM-Sum and LM-Sum are solved by

Sum-Index and Min-Heap-Op, respectively. First, we compute the transaction

waiting times based on the submission times and the current timestamp. Then, the

transactions are sorted according to the waiting times in a non-increasing order. That

70

3.2. Fair-Pack: a Fairness-based Transaction Packing Algorithm

Algorithm 1 Fair-Pack: a fairness-based transaction packing algorithm for prob-

lem Ori-Fair
Input: n: the memory pool size; X = {x1, · · · , xn}: the transactions in memory

pool; S = {s1, · · · , sn}: the transaction submission times; k: the maximum number

of transactions in a block; tc: the current timestamp; Is-Valid(U): a procedure to

check the validity of transaction subset U ; Sum-Index(W , n, k,m): a procedure to

solve SM-Sum; Min-Heap-Op(W , n, k,m): a procedure to solve LM-Sum

Output: a valid transaction subset of X or Nil in case that all subsets are invalid

1: W ← tc − S

2: Sort X with respect to W in non-increasing order

3: for m← 1 to ∞ do

4: if k < n then id←Sum-Index(W , n, k,m).Main()

5: else id← Min-Heap-Op(W , n, k,m).Main()

6: end if

7: if id = Nil return Nil end if

8: U ← xid

9: if Is-Valid(U) return U end if

10: end for

71

Chapter 3. Fairness-based Transaction Packing

is, wi will be no smaller than wj if i < j after sorting. In the for-loop, we transform the

problem of finding the transaction subset with the 1-st, 2-nd, · · · , m-th largest sum of

waiting times to SM-Sum or LM-Sum depending on the relationship between k and

n. Both the procedures of Sum-Index and Min-Heap-Op will return the indexes

of the selected elements. Finally, we derive the transaction subset based on the index

set as the output of Fair-Pack.

3.3 Sum-Index: a Heuristic Solution to SM-Sum

In this section, we focus on solving SM-Sum. In particular, we propose to use directed

acyclic graph (DAG) G to represent all the Σk
i=0

(
n
i

)
subsets. In G, we prove a partial

order among the subsets with respect to the subset sum, which leads to the heuristic

to enumerate the subsets according to the index sum. That is, the subset sum is

related to the number of elements and index sum. Such a heuristic is leveraged in

algorithm Sum-Index to solve SM-Sum. To begin with, we define the terminologies

of set sum and index sum as follows.

Definition 8. Given a set of n real numbers W, the set sum of W is defined to be

the sum of all the elements in W, i.e., E(W) = Σn
i=1wi.

Definition 9. Given a set of n positive real numbers W = {w1, · · · , wn} and a subset

I = {wσ1 , · · · , wσp} of W, the index sum of I is defined to be the sum of the indexes

of its corresponding elements in W, i.e., D(I) = Σp
i=1σp.

There are Σk
i=0

(
n
i

)
nodes in G, where each node represents a subset. Moreover, G

consists of k + 1 connected components, where the p-th component is the collection

of subsets of size p − 1. The number of subsets of size i, i.e.,
(
n
p

)
, is exactly the

size of the p-th component. Furthermore, the subset in the i-th component tends to

have a smaller subset sum than the j-th component if i < j because of the essential

72

3.3. Sum-Index: a Heuristic Solution to SM-Sum

difference in subset sizes, which indicates a partial order among the components

concerning subset sum. Next, we introduce the directed edges in each component.

In the p-th component of G, all the subsets of size p are listed level by level according

to the index sum as shown in Figure 3.2. In the figure, the “greater” operator between

two subsets represents the relationship of subset sum between them. We find that the

subset with a smaller index sum is likely to have a larger set sum. In particular, given

a subset I whose index sum is not the smallest, there must be another subset I ′ with

smaller index sum and larger subset sum, which is proved in Theorem 2. Moreover,

we add a directed edge from the node representing I ′ to the node representing I. In

this way, all the nodes are (weakly) connected in the p-th components. Because the

edges are always from the upper level, i.e., smaller index sum, to the lower level, i.e.,

larger index sum, the p-th components is a directed and acyclic.

{w
1
~w

p
}

{w
1
~w

p-1
 w

p+1
}

{w
1
~w

p-2
 w

p-1
 w

p+2
} {w

1
~w

p-2
w

p
 w

p+1
}

{w
1
~w

p-1
 w

p+3
} {w

1
~w

p-2
 w

p
 w

p+2
} {w

1
~w

p-3
 w

p-1
 w

p
 w

p+1
}

>

> > > >

p(p+1)/2

p(p+1)/2 +1

p(p+1)/2 +2

p(p+1)/2 +3
.
.

.

.
.
.

Index SumSubset Elements

> >

.

.

Figure 3.2: Subsets of size p listed level by level according to index sum

Theorem 2. Given a set of n positive real numbers W = {w1, · · · , wn} where w1 ≥

· · · ≥ wn and a subset I of W where |I| = p, D(I) = d, and d 6= p(p + 1)/2, there

exists at least one subset I ′ ofW such that |I ′| = p, D(I ′) = d−1, and E(I ′) ≥ E(I).

Proof. Let I = {wσ1 , · · · , wσp} where Σp
i=1σp = d and σ1 < · · · < σp. Assume, for the

sake of contradiction, that for all i, wσi−1 ∈ I if σi > 1 (C1). Assume, for the sake

of contradiction, that σ1 > 1 (C2). We have wσ1−1 ∈ I according to assumption C1.

73

Chapter 3. Fairness-based Transaction Packing

However, wσ1 is the largest element in I. Therefore, C2 does not hold and σ1 = 1.

Similarly, we can get σi = i for every 1 ≤ i ≤ p. Therefore, d = Σp
i=1σi = p(p+ 1)/2,

which contradicts the condition that d 6= p(p + 1)/2. Hence, C1 does not hold and

there exists at least one i such that σi > 1 and wσi−1 /∈ I.

Let σt > 1 and wσt−1 /∈ I. We construct I ′ = I \ {wσt} ∪ {wσt−1} satisfying the

conditions in the theorem as follow.

• I ′ ⊂ W since I ⊂ W and {wσt−1} ∈ W .

• |I ′| = |I| − 1 + 1 = p.

• D(I ′) = D(I)− σt + (σt − 1) = d− 1.

• E(I ′) ≥ E(I) since E(I ′)− E(I) = wσt−1 − wσt ≥ 0.

We apply the above construction to all the k + 1 components in G, resulting in G to

be a DAG. The partial orders among the subsets is reveal in G, which gives birth to

a heuristic algorithm Sum-Index to solving SM-Sum as shown in Algorithm 2.

In Sum-Index, we do not order all the subsets to find the subset with exactly the

m-th largest subset sum since the time complexity, i.e., O(Σk
i=0

(
n
i

)
· log(Σk

i=0

(
n
i

)
)), is

too high. Instead, we enumerate the subset size in decreasing order, the index sum of

the subsets in increasing order, and the subset in lexicographical order sequentially.

The algorithm Sum-Index begins with the first subset of size k and index sum

k(k + 1)/2. Such a subset contains exactly the k largest elements in W . To find the

next subset, procedure Next-Subset first tries to invoke the procedure Next-PD

to find a subset with the same subset size and index sum. In detail, Next-PD takes

a subset r as input and outputs the next subset of r in lexicographical order. If such

a subset is not found, Next-Subset increases the desired index sum and invokes

procedure First-PD to find the first subset in lexicographical order. Finally, if the

74

3.3. Sum-Index: a Heuristic Solution to SM-Sum

Algorithm 2 Sum-Index: a heuristic algorithm for SM-Sum

Input: W : a set of n positive real numbers; k: a positive integer that k < n; m: a

positive integer that m ≤ Σk
i=0

(
n
i

)
Output: the indexes of the subset of W with approximately the m-th largest subset

sum among all the Σk
i=0

(
n
i

)
subsets

1: procedure Main()

2: if m = 1 return First-Subset() end if

3: return Next-Subset()

4: end procedure

5: procedure First-Subset()

6: global gp ← k . “global” variable for all procedures

7: global gd ← gp(gp+1)
2

8: return First-PD(gp, gd)

9: end procedure

10: procedure Next-Subset()

11: return Next-PD(gp, gd) if not Nil

12: gd ← gd+ 1

13: return First-PD(gp, gd) if not Nil

14: (gp, gd) ← (gp− 1, gp(gp+1)
2

)

15: if gp = 0 return Nil end if

16: return First-PD(gp, gd)

17: end procedure

75

Chapter 3. Fairness-based Transaction Packing

18: procedure First-PD(p, d)

19: if d < (p+1)p
2

or d > (n−p+1+n)p
2

then return Nil

20: end if

21: r ← an array of size p in which all elements are 0

22: for i← 1 to p do

23: ri ← max(ri−1 + 1, d− (n−p+i+1+n)(p−i)
2

)

24: d ← d− ri
25: end for

26: return r

27: end procedure

28: procedure Next-PD(p, d, r)

29: s ← an array of size p in which all elements are 0

30: for i← 1 to p do si ← si−1 + ri end for

31: for i← p− 1 to 1 do

32: if ri + 1 < ri+1 and d − si − 1 ≥ (ri+ri+p−i+3)(p−i)
2

and d − si − 1 ≤
(n+i+1−p+n)(p−i)

2
then

33: (ri, d) ← (ri + 1, d− si − 1)

34: for j ← i+ 1 to p do

35: rj ← max(rj−1 + 1, d− (n+j+1−p+n)(p−j)
2

)

36: d ← d− rj
37: end for

38: return r

39: end if

40: end for

41: return Nil

42: end procedure

76

3.4. Min-Heap-Op: an Optimal Solution to LM-Sum

index sum exceeds the limit, Next-Subset will increase the subset size and set the

index sum to the smallest one.

3.4 Min-Heap-Op: an Optimal Solution to LM-

Sum

In this section, we propose algorithm Min-Heap-Op to solve LM-Sum. We build a

min-heap to maintain the relationship in terms of subset sums among the 2n subsets,

and the subsets are generated by manipulating the min-heap.

To begin with, we construct a binary tree H(n) as follows:

• H(n).root = {n}

• For each element e ∈ H(n) in which min(e) 6= 1, e.lc = e\{min(e)}∪{min(e)−1}

• For each element e ∈ H(n) in which min(e) 6= 1, e.rc = e ∪ {min(e)− 1}

An example of H(4) is shown in Figure 3.3(a). We see that H(4) is a complete binary

tree which contains and only contains all the subsets of {1, 2, 3, 4}. Next, we prove it

in case of n through Theorem 3 and Theorem 4.

Theorem 3. The tree H(n) contains all the non-empty subsets of U = {1, 2, · · · , n}.

Proof. Consider an arbitrary subset I of U . We prove the lemma by induction on the

minimum value of I.

Base case. When min{I} = n, we can infer that I = {n} because I ⊆ U and

max{U} = n. Therefore, I is an element, in particular, the root of H(n).

Induction step. Let 1 < k ≤ n and assume I is an element of H(n) as long as

min(I) ≥ k. We aim to prove that I is an element of H(n) as long as min(I) = k− 1.

We consider three circumstances as follows.

77

Chapter 3. Fairness-based Transaction Packing

• Case 1: |I| = 1. We can infer that I = {k − 1} as min(I) = k − 1. Consider

another subset I ′ = {k}. Because I ′ ⊆ U and min(I ′) = k, we know I ′ is an

element of H(n). I ′.lc = I ′ \ {k} ∪ {k − 1} = I. As a result, I is an element of

H(n) as well.

• Case 2: |I| 6= 1 and min(I\{k−1}) = k. Consider another subset I ′ = I\{k−1}.

As I ′ ⊆ I ⊆ U and min(I ′) = k, I ′ is an element ofH(n). I ′.rc = I ′∪{k−1} = I.

Therefore, I is also an element of H(n).

• Case 3: |I| 6= 1 and min(I \{k−1}) 6= k. Consider another subset I ′ = I \{k−

1} ∪ {k}. Because I ⊆ U and k ∈ U , we can infer that I ′ ⊆ U . Furthermore, I ′

is an element of H(n) as min(I ′) = k. I ′.lc = I ′ \ {k} ∪ {k − 1} = I. Hence, I

is an element of H(n) as well.

The above three cases cover all the subsets whose minimum value equals k−1. Mean-

while, we show the subsets are elements of H(n) for all the three cases. Therefore, I

is an element of H(n) as long as min(I) = k − 1.

Based on the base case and induction step, we conclude that I ⊆ U is an element of

H(n) as long as min(I) ≥ 1, which completes the proof.

Theorem 4. The tree H(n) is a complete binary tree, which contains and only con-

tains all the non-empty subsets of U = {1, 2, · · · , n}.

Proof. Notate the set of elements at level k and its size as H(n, k) and |H(n, k)|,

respectively. In the following, we prove that |H(n, k)| ≤ 2k−1 and min(e) = n+ 1− k

for any 1 ≤ k ≤ n− 1 and e ∈ H(n, k) by induction on the value of k.

Base Case. When k = 1, there is only one element {n} in the first level of the tree

H(n), i.e., H(n, k) = {{n}}. We can get that H(n, k) = 1 ≤ 2k−1 and min({n}) =

n = n+ 1− k.

Induction Step. Let k be an integer that 1 ≤ k < n−1 and assume that |H(n, k)| ≤

78

3.4. Min-Heap-Op: an Optimal Solution to LM-Sum

2k−1 and min(e) = n+1−k for any e ∈ H(n, k). We aim to prove that |H(n, k+1)| ≤

2k and min(e) = n−k for any e ∈ H(n, k+1). We prove the two statements separately

as follows.

• There are exactly two children for each element in H(n, k) according to the

definition of the tree H(n). If there is no overlapping element among all the

children of all the elements in H(n, k), |H(n, k + 1)| will be exactly twice the

value of |H(n, k)|, i.e., |H(n, k + 1)| = 2 · |H(n, k)| ≤ 2 · 2k−1 = 2k. If any

overlapping element, the value of |H(n, k+1)| will be smaller, i.e., |H(n, k+1)| ≤

2k. As a result, |H(n, k + 1)| ≤ 2k.

• Considering an arbitrary element e ∈ H(n, k+1), e must be a child of some ele-

ment e′ ∈ H(n, k). We can get min(e′) = n+1−k according to the assumption.

If e′.lc = e, then min(e) = min(e′\{min(e′)}∪{min(e′)−1}) = n−k. Otherwise,

e′.rc = e. Under this circumstance, min(e) = min(e′ ∪ {min(e′)− 1}) = n− k.

As a result, min(e) = n− k for any e ∈ H(n, k + 1).

Based on the base case and the induction step, we draw the conclusion that |H(n, k)| ≤

2k−1 and min(e) = n + 1 − k for any 1 ≤ k ≤ n − 1 and any e ∈ H(n, k). Consider

k = n, we can infer that min(e) = 1 for any e ∈ H(n, n). Therefore, all the ele-

ments in H(n, n) have no child, i.e., H(n) consists of exactly n levels. Therefore,

|H(n)| = Σn
i=1|H(n, i)| ≤ Σn

i=12i−1 = 2n − 1. In another word, the size of the tree

H(n) is no more than 2n − 1.

The number of non-empty subsets of U is 2n − 1. According to Lemma 3, the size of

H(n) is no less than 2n−1, which is the number of non-empty subsets of U . Therefore,

the size of H(n) is exactly 2n − 1. Meanwhile, H(n) contains and only contains all

the non-empty subsets of U . Moreover, H(n) consists of exactly n levels. As a result,

H(n) is a complete binary tree, which completes the proof.

Based on the binary tree H(n), we construct a minimum heap WH(n) as follows:

79

Chapter 3. Fairness-based Transaction Packing

• WH(n).root.value = H(n).root

• For each element e ∈ WH(n) in which e.value.lc 6= Nil, e.lc.value = e.value.lc

• For each element e ∈ WH(n) in which e.value.rc 6= Nil, e.rc.value = e.value.rc

• For each element e ∈ WH(n), e.key = E(We.value)

Each element in H(n) represents the indexes of a selected subset of W . For example,

Figure 3.3(b) shows the subsets generated according to H(n) when n = 4. In Figure

3.3(b), we can see the subset sum of a parent node is always no less than the one of a

child node, which implies H(4) to be a min-heap. In the following, we formally prove

that H(n) is a min-heap based on the subset sum as shown in Theorem 5.

{4}

{3} {3,4}

{2} {2,3} {2,4} {2,3,4}

{1} {1,2} {1,3}{1,2,3} {1,4} {1,2,4}{1,3,4} {1,2,3,4}

 H(4,1)

 H(4,2)

 H(4,3)

 H(4,4)

{w
2
} {w

2
 w

3
} {w

2
 w

4
} {w

2
w

3
 w

4
}

{w
3
} {w

3
w

4
}

{w
4
}

(a)

(b)

{w
1
 w

2
}{w

1
} {w

1
 w

3
}{w

1
w

2
w

3
} {w

1
 w

4
}{w

1
w

2
w

4
}{w

1
w

3
w

4
}{w

1
w

2
w

3
w

4
}

Figure 3.3: (a) H(4) and (b) WH(4)

Theorem 5. WH(n) is a binary min-heap.

Proof. On one hand, WH(n) is a complete binary tree since the value field in WH(n)

is exactly the same with H(n) while H(n) is a complete binary tree as proven in

80

3.4. Min-Heap-Op: an Optimal Solution to LM-Sum

Theorem 4. On the other hand, WH(n) satisfies the min-heap property, which is

demonstrated as follows.

• For each e in WH(n) with left child, i.e., e.lc 6= Nil, the key of e.lc must be no

smaller than the key of e.

e.lc.key

= E(We.lc.value) = E(We.value.lc)

= E(We.value\{min(e.value)}∪{min(e.value)−1})

= E(We.value)− wmin(e.value) + wmin(e.value)−1

= e.key − (wmin(e.value) − wmin(e.value)−1)

≥ e.key

• For each e in WH(n) with right child, i.e., e.rc 6= Nil, the key of e.rc must be

no smaller than the key of e.

e.rc.key = E(We.value.rc)

= E(We.value∪{min(e.value)−1})

= E(We.value) + wmin(e.value)−1

= e.key + wmin(e.value)−1

≥ e.key

To summarize,WH(n) is a binary min-heap as it is a complete binary tree and satisfies

the min-heap property, which completes the proof.

Note that min-heap is an efficient data structure to find the k-th minimum element.

We leverage the min-heap property to solve LM-Sum as shown in Algorithm 3.

In Algorithm 3, we build a min-heapWH(n) to represent all the subsets ofW . In case

that m equals 1, Algorithm 3 directly returns the whole set W because W owns the

81

Chapter 3. Fairness-based Transaction Packing

Algorithm 3 Min-Heap-Op: a min-heap-based algorithm to solve LM-Sum

Input: W : a set of n positive real numbers; k: a positive integer that k > n; m: a

positive integer that m ≤ 2n

Output: the indexes of the subset ofW with the m-th largest subset sum among all

the 2n possible subsets

1: procedure Main()

2: if m = 1 return First-Subset() end if

3: return Next-Subset()

4: end procedure

5: procedure First-Subset()

6: global WH(n) ← a min-heap built as stated

7: return {1, 2, · · · , n}

8: end procedure

9: procedure Next-Subset()

10: r ← Delete-Min(WH(n))

11: if r 6= ∅ then return {1, 2, · · · , n} \ r.value end if

12: return Nil

13: end procedure

82

3.5. Time Complexity Analysis

largest subset sum essentially. Otherwise, we applies the Delete-Min operation to

WH(n) to get its root r. The key of r is the smallest subset sum according to the

min-heap property. Therefore, we exclude the elements in r.value from the whole

set and get the transaction indexes to be selected. Delete-Min will also deletes

the minimum element, i.e., the root, from the min-heap and maintains the min-heap

property. In this way, different subsets can be generated continuously.

3.5 Time Complexity Analysis

In this section, we analyze the time complexity of the algorithms Sum-Index, Min-

Heap-Op, and Fair-Pack.

Theorem 6. The time complexity of Sum-Index is O(n).

Proof. As shown in Algorithm 2, the main procedure of Sum-Index finally calls the

procedure First-PD on line 13 or 16, or the procedure Next-PD on line 11. Note

that the time complexity of Sum-Index is irrelevant to the value of m since m is

only an indicator for whether the first subset is to be generated.

In terms of First-PD, it contains a for-loop from 1 to p. Because p, as the number

of elements in the subset, is of O(n) size, First-PD takes O(n) time.

There are three for-loops in procedure Next-PD on line 30, 31, and 34. The first

for-loop on line 30 takes O(n) time. The third for-loop on line 34 is inside the second

for-loop on line 31 but will be invoked no more than once because there is a return

statement right after it. As a result, the second and third for-loops takes O(n) time

in total. Overall speaking, Next-PD takes O(n) time.

Finally, we conclude that the time complexity of the algorithm Sum-Index is O(n).

Theorem 7. The time complexity of Min-Heap-Op is O(n).

83

Chapter 3. Fairness-based Transaction Packing

Proof. The major time overhead of Min-Heap-Op lies in the construction of the min-

heapWH(n) on line 6 and the operation Delete-Min on line 10. In the construction

of WH(n), we only generate its root and store how the other elements are generated

instead of generating all the elements in memory. As a result, it only takes O(1) for

the min-heap construction. In terms of Delete-Min, the time complexity should

be logarithmic to the size of the heap. As a result, each Delete-Min takes O(n)

because the size of WH(n) is 2n − 1. Note that there are also O(n) key comparisons

between any two elements of WH(n), in which the subset sums are to be calculated.

However, the calculation of subset sum of a child node can be derived from the subset

sum of its parent because the difference between them is only one or two elements.

To this end, The subset sums of the O(n) subsets can be calculated in O(n) time. In

conclusion, the time complexity of the algorithm Min-Heap-Op is O(n).

Finally, it comes to the time complexity of the algorithm Fair-Pack. As shown

in Algorithm 1, Fair-Pack iterates the variable m from 1 to infinity until a valid

subset (block) is found. Hence, the running time of Fair-Pack heavily depends on

the block validity ratio defined as follows.

Definition 10. Block Validity Ratio: the possibility for a block to be valid (%).

Theorem 8. Supposing the block validity ratio to be α, the algorithm Fair-Pack

terminates in log(1−β)
log(1−α)

·O(n) with a possibility no less than β.

Proof. The possibility that Fair-Pack terminates in k rounds is 1−(1−α)k, in which

each round is a call of Sum-Index or Min-Heap-Op. Hence, we have (1−(1−α)k) ≥

β, which leads to k ≥ log(1−β)
log(1−α)

. Each round of Fair-Pack takes O(n) time according

to Theorem 6 and Theorem 7. Finally, Fair-Pack terminates in log(1−β)
log(1−α)

·O(n) with

a possibility no less than β, which completes the proof.

For example, assume that the block validity ratio is 0.5%, Fair-Pack will terminate

in around 460 · O(n), 597 · O(n), and 919 · O(n) with possibilities of 90%, 95%, and

84

3.6. Performance Evaluation

99%, respectively.

3.6 Performance Evaluation

In this section, we conduct extensive experiments to evaluate the performance of

Fair-Pack.

syntax= "proto2";
service Discovery {
 rpc ExchangeNode(Node) returns (Node);
 rpc Hello(Message) returns (Message);
}
service Synchronization{
 rpc BlockFrom(Message) returns (Block);
 rpc BlockTo(Block) returns (Message);
 rpc ExchangeBlock(Block) returns (Block);
 rpc TransactionTo(Transaction) returns (Message);
 rpc TransactionFrom(Message) returns (Transaction);
}

message Block{
 required uint64 height = 1;
 required bytes unixtime = 2;
 required bytes previoushash = 3;
 required bytes blockhash = 4;
 required bytes difficulty = 5;
 required bytes answer = 6;
 repeated bytes txshash = 7;
 required bytes miner = 8;
 required int32 number = 9;
}
message Message{
 required bytes value = 1;
}

message Transaction{
 required bytes unixtime = 1;
 required bytes body = 2;
 required bytes txhash = 3;
 required int32 type = 4;
 required bytes txfrom = 5;
 optional bytes txto = 6;
}
message Node{
 required int32 number = 1;
 repeated bytes ipport = 2;
}

Figure 3.4: Protocol buffers of the blockchain prototype

First, we developed a proof-of-concept blockchain prototype using around 1070-line

python code based on gRPC. Figure 3.4 shows the communication interfaces among

blockchain nodes. In the prototype, two services are implemented to support the

blockchain runtime, i.e., peer discovery (“Discovery”) and data synchronization (“Syn-

chronization”). The “Discovery” service is used for discovering the nodes inside the

blockchain network. When a node is started, it will greet several static nodes (the

same as bootnodes in Ethereum) and exchange the connectivity information. The

block and transaction synchronization is achieved by the “Synchronization” service,

which consists of five remote procedure calls. One thing in particular is that Proof of

Work (PoW) serves as the consensus protocol of the blockchain prototype.

85

Chapter 3. Fairness-based Transaction Packing

Furthermore, three transaction packing algorithms, i.e., Fair-Pack, Fair-First

[79], and Random-Pack are implemented with around 510-line C++ code. The

three packing algorithms are integrated into the blockchain prototype with the help

of ctypes, using which the packing algorithms are compiled as dynamic link libraries

and can be called in python programs.

Finally, we deploy the blockchain prototype together with the three packing algo-

rithms on Amazon Web Services with up to 60 Elastic Compute Cloud (EC2) in-

stances. The 60 c4.large EC2 instances constitute 120 nodes, in which each instance

with 2 vCPUs and 3.75GB RAM is shared by two nodes.

The Bitcoin data in year 2012, whose size is around 804 megabytes containing around

1.9 million transactions, is used as the input for the permissioned blockchain.

The performance metrics are the fairness and average response time as discussed in

problem definition. The performances of the packing algorithms can be affected by

the transaction incoming rate, block generation time, block size, and block validity

ratio. We study how the three factors influence the performance of the three packing

algorithms. In particular, transaction incoming rate, block size, and block validity

ratio are tuned by direct parameter setting, while block generation time is tuned by

varying the PoW difficulty. The experiment runs for 5 minutes and 100 times for each

parameter setting, e.g., transaction incoming rate as 600tx/s, blockchain generation

time as 5.0s, block size as 3000tx/bk, and block validity ratio to be 0.5%. Figure 3.5

presents the results.

3.6.1 Influence of Transaction Incoming Rate

As the transaction incoming rate increases, there will be more transactions in memory

pool when generating a block. Moreover, the backlog of memory pool will increase if

transaction incoming rate is larger than transaction processing speed. We study the

influence of the transaction incoming rate with results shown in Figure 3.5 (a) and

86

3.6. Performance Evaluation

60

A
v

g
.

R
es

p
o

n
se

 T
im

e
(s

)

50

40

30

20

10

Transaction Incoming Rate (tx/s)
200 400 600 800 1000

Transaction Incoming Rate (tx/s)
200 400 600 800 1000

F
a

ir
n

es
s

0.75

0.74

0.73

0.72

0.71

0.70

Fair-Pack
Fair-First
Random

70

A
v

g
.

R
es

p
o

n
se

 T
im

e
(s

)

60

50

40

30

20

10

0

120

A
v

g
.

R
es

p
o

n
se

 T
im

e
(s

)

100

80

60

40

20

Block Generation Time (s)
2 4 6 8 10

Block Size (tx/bk)
1000 2000 3000 4000 5000

Block Size (tx/bk)
1000 2000 3000 4000 5000

Block Generation Time (s)
2 4 6 8 10

F
a

ir
n

es
s

0.75

0.70

0.65

0.60

0.55

0.50

F
a

ir
n

es
s

0.75

0.70

0.65

0.60

0.55

0.76

F
a

ir
n

es
s

0.75

0.74

0.73

0.72

0.71

0.70

20.5

A
v

g
.

R
es

p
o

n
se

 T
im

e
(s

)

20.0

19.5

19.0

18.5

18.0

Block Acceptance Rate (%)
0.2 0.4 0.6 0.8 1.0

Block Acceptance Rate (%)
0.2 0.4 0.6 0.8 1.0

Fair-Pack
Fair-First
Random

Fair-Pack
Fair-First
Random

Fair-Pack
Fair-First
Random

Fair-Pack
Fair-First
Random

Fair-Pack
Fair-First
Random

(a)

(b)

(c)

(d)

(e)

(f)

(g) (h)

Fair-Pack
Fair-First
Random

Fair-Pack
Fair-First
Random

Figure 3.5: Experimental result

87

Chapter 3. Fairness-based Transaction Packing

(b). Particularly, we vary the transaction incoming rate from 100tx/s to 1000tx/s

with a step of 50tx/s and fix the block generation time, block size, and block validity

ratio to be 5.0s, 3000tx/bk, and 0.5%, respectively.

The transaction incoming rate, if less than 600tx/s, will be less than or equal to the

transaction processing speed, which is calculated to be 3000tx/bk
5.0s/bk

= 600tx/s. On this

circumstance, the average response time only slightly increases as the transaction

incoming rate increases for all the three transaction packing algorithms. This is

because there is nearly no backlog of the memory pool. In terms of fairness, all the

three algorithms perform better with the increase of the transaction incoming rate.

The reason behind it is that the increasing number of transactions decreases response

time differences among the transactions.

When the transaction incoming rate is over 600tx/s, the backlog of the memory

pool will increase as time passes because the transaction processing speed is less

than the transaction incoming rate. In this case, more and more transactions remain

unpacked in the memory pool, which increases the average response time regardless

of the packing algorithms. However, the fairness only fluctuates and even increases.

This is because all the transactions in the blockchain incur long response times and

the deviation among the response times of the transactions will be smaller.

Overall speaking, all three transaction packing algorithms are influenced by the trans-

action incoming rate. With different transaction incoming rates, the response time

using Fair-Pack is slightly better than one using the other two algorithms. More-

over, Fair-Pack can achieve fairness of 0.70 when the transaction incoming rate

is no more than 1000tx/s while the fairness using Fair-First and Random are

unsatisfactory, i.e., up to 0.54 and 0.52, respectively.

88

3.6. Performance Evaluation

3.6.2 Influence of Block Generation Time

In this subsection, we study how the performances of the three algorithms are affected

by the block generation time. The results in terms of the average transaction response

time and the fairness are shown in Figure 3.5 (c) and (d), respectively. We vary

the block generation time from 1.0s to 10.0s with a step of 0.5s. Nonetheless, the

transaction incoming rate, the block size, and the block validity ratio are fixed to be

600tx/s, 3000tx/bk, and 0.5%, respectively.

The average response time increases with the increase of the block generation time

whatever the transaction packing algorithm is. A short block generation time de-

creases the waiting times of the transactions and increases the possibility for the

transactions to be packed. Moreover, Figure 3.1 (c) indicates that the average re-

sponse time increases remarkably when the block generation time is over 5.0s, which

is the time when the transaction incoming rate is higher than the transaction pro-

cessing speed. On such circumstances, transactions will be stacked in the memory

pool and remain unpacked for a long time. In general, the three algorithms achieve

similar average response time regardless of the block generation time.

In terms of fairness, our algorithm outperforms the other two algorithms remarkably

when the block generation time is no more than 5.0s. The number of transactions in

the memory pool will be smaller than the block size when the block generation time

is less than 5.0s. In this case, our algorithm Fair-Pack will employ Min-Heap-

Op as the underlying transaction selection algorithm, which achieves larger fairness.

When the block generation time is over 5.0s, Fair-Pack still outperforms two other

algorithms although with degraded advantages. The reason is that the heuristic

algorithm Sum-Index is employed for most of the time on this circumstance.

89

Chapter 3. Fairness-based Transaction Packing

3.6.3 Influence of Block Size

Block size is another significant factor influencing the performance of the transaction

packing algorithms. In the setting, we vary the block size from 500tx/bk to 5000tx/bk

with a step of 250tx/bk and set the transaction incoming rate, block generation time,

and block validity ratio to be 600tx/s, 5.0s, and 0.5%, respectively. The results of

average response time and fairness are shown in Figure 3.5 (e) and (f), respectively.

At first glance, Figure 3.5 (e) and (f) are nearly symmetric with Figure 3.5 (c) and

(d), respectively. Indeed, the influence of large block size is similar to the effect of a

short block generation time. The distinct difference lies in the scale of the y-axis. For

example, the average response time can be as least as 1.5s when the block generation

time is 1s. However, the best average response time is up to 9s when the block size is

5000tx/bk. The reason is that the average response time depends much on the block

generation time, which is fixed to be 6s in this subsection.

In Figure 3.5 (f), the fairness among transactions using Fair-First and Random

can be as least as 0.58 and 0.55 when the block size is 5000tx/bk. This is because

the deviation of waiting times of the transactions can be vast with large block size.

However, our algorithm Fair-Pack remains effective on this circumstance, which

results from the theoretically optimal algorithm Min-Heap-Op.

3.6.4 Influence of Block Validity Ratio

Finally, we study the influence of the block validity ratio. In terms of block validity

ratio, it naturally comes to our minds that a low block validity ratio can lead to the

invalidity of all the blocks containing transactions with large waiting times. Then, a

small number of transactions with long waiting times result in long response times

of a small set of transactions, substantial deviation of the response times in terms of

the full transaction set, and finally poor fairness.

90

3.7. Related Work

To verify the idea, we conduct experiments in which the transaction incoming rate,

the block generation time, and the block size are fixed to be 600tx/s, 5.0s, and

3000tx/bk, respectively and the block validity ratio varies from 0.1% to 1.0% with a

step of 0.05%. However, neither the fairness nor the average response time is distinctly

affected by the block validity ratio as shown in Figure 3.5. The reason is that the

validity of a block is random and can not be set deliberately. As a result, we can pack

a transaction with long waiting time as long as a block containing it is valid.

In terms of fairness, Fair-Pack, Fair-First, and Random achieves fairness of

0.765, 0.720, and 0.701, respectively. Note that, an improvement to 0.765 from 0.701

or 0.720 is significant since the value of fairness only varies from 0 (exclusive) to

1 (inclusive), and a fairness of 0.700 is trivial to achieve by random packing. The

average response times using Fair-Pack, Fair-First, and Random are around

18.00s, 19.75s, and 20.65s, respectively. That is, Fair-Pack reduces the average

response time of Fair-First and Random by 8.9% and 12.8%, respectively.

3.7 Related Work

The existing works related to blockchain fairness can be classified into three categories,

i.e., fairness among service providers, between service providers and requesters, and

among service requesters.

In terms of fairness among service providers, a service provider contributing a cer-

tain proportion of resources is supposed to gain the same portion of rewards in fair

blockchains. The research communities have studied such fairness in permissionless

blockchains, in which the resource is computational resource and the rewards refer to

monetary rewards. It is shown that the Bitcoin mining protocol is not incentive com-

patible and an attack can make the miners’ revenue larger than their fair share [49].

In [48], the authors only consider the rewards of the miner contributing the largest

91

Chapter 3. Fairness-based Transaction Packing

computational resource and propose Bitcoin-NG, which improves such fairness. In

[127], the authors consider approximate fairness among all the miners and propose

FruitChains with theoretical analysis.

A service provider is supposed to receive some rewards if the service requester enjoys

its service, which is fairness between the service providers and requesters. In tradi-

tional systems, the rewards are transferred with the help of a trustworthy third-party.

The smart contract in blockchains provides great potential to enhance such fairness

since it removes the third party and the transactions are automatically executed. In

[94], the authors solve the problem that malicious contractual parties may prema-

turely abort from a protocol to avoid financial payment. In [107], the authors explore

the solution space for enabling the fair exchange of a cryptocurrency payment for a

receipt. The fairness between cloud service providers and requesters are investigated

in [70] and [185].

The fairness among the service requesters is insufficiently explored in blockchain. In

permissionless blockchains, the service requesters are supposed to pay transaction

fees in order to make their transactions confirmed [61]. As a result, the transactions

with high transaction fees are more likely to be confirmed earlier, which achieves

general fairness although not quantified. There is no native cryptocurrency to be

paid as transaction fee in permissioned blockchains. Hence, fairness is not defined

or investigated. In [79], the fairness problem in permissioned blockchains was first

studied and Fair-First was proposed. However, it lacks theoretical analysis, and

the performance is not satisfactory.

3.8 Chapter Summary

This chapter presents Fair-Pack, the first fairness-based transaction packing al-

gorithm for permissioned blockchain. In particular, we formally define the fairness

92

3.8. Chapter Summary

problem and transform it into the problem of subset sum through a proof of the

correlation between the fairness and the subset sum of the transaction waiting times.

Then, a heuristic algorithm and a min-heap-based optimal algorithm are proposed to

solve the subset sum problem for different parameter settings. The proof and the two

algorithms contribute to Fair-Pack, a fairness-based transaction packing algorithm

for permissioned blockchain. Extensive experimental results have articulated the ad-

vantages of Fair-Pack over prior packing algorithms in terms of both fairness and

average response time.

93

Chapter 4

Multi-keyword Search

Nowadays, enterprises tend to store their data in data centers rather than locally

due to the increasing demands for storage and computation resource [63]. Because

there can be sensitive information, e.g., trade-union membership and health-related

records, and even the data center and be malicious, the data is typically encrypted

before outsourcing. The encryption, in turn, hinders data utilization, e.g., frequent

search operations. Therefore, we need to bring out the technology of searchable

symmetric encryption (SSE).

SSE is a technique enabling searching over encrypted data, in which the data owners

encrypt not only the data but also the search requests [149]. By this means, the data

center knows nearly nothing about the data. However, the data center is assumed to

be technically curious but honest in this field [84]. In practice, the data center has

the potential to be malicious and deviate from the predefined protocol, e.g., to return

only part of the result to save computational resources. Hence, reliability issues arise.

To deal with the reliability issue, the research community has proposed verifiable

searchable encryption, in which the data center attaches some flag bits to the result

[113]. Upon receiving the result from the data center, the data owners can decode the

flag bits to verify the correctness of the result. However, it requires noticeable com-

94

putational resources for the data owners to decode the flag bits [21]. It is preferable

to outsource as many computational tasks as possible to the end devices, especially

those with limited battery.

Recently, blockchain technology [119] [79] shows its potential to solve the reliability

issue. In these schemes, the blockchain, a distributed ledger maintained by a trustless

peer-to-peer network, serves as the data center. The encrypted data with indexes,

which is stored in the blockchain and smart contract [170], is used to implement the

functions of data storage and data search. Since all the operations are completed by

all the nodes in the network, the correctness of the result can be guaranteed as long

as the majority of the nodes are honest [70].

Existing blockchain-based searchable encryption schemes [185] [23] focus only on

single-keyword search. They can be extended to multi-keyword scenarios by per-

forming a single-keyword search for multiple times and taking the intersection of the

results. However, such extensions suffer from privacy and efficiency issues. In partic-

ular, the intermediate results, i.e., the data associated with each individual keyword,

will be exposed to the service peers. Such data leakage raises the privacy issue. More-

over, the service peers have to handle the single-keyword search requests one after

another. Since some keywords can appear in the majority or even all the data, the

computational cost to handle such keywords multiple times seems a substantial bur-

den. The large amount of intermediate results also leads to a significant financial cost

since they are written to the smart contract by the service peers. After the results for

all the keywords are calculated, the service peers have to calculate the intersection of

the results, which demands an extra computational cost.

In this chapter, we design a privacy-preserving and efficient data management system

with the functions of database setup, dynamic update, and multi-keyword search.

The original database to be outsourced is defined as a set of identifier-keyword pairs.

That is, there are several keywords associated with each of the identifiers. After

setting the database up, the data owner can add or delete some identifier-keyword

95

Chapter 4. Multi-keyword Search

pairs dynamically. Meanwhile, the data owner can query all the identifiers that

are associated with a set of keywords. The data center is a blockchain network

composed of multiple service peers which rent out their computational resources to

earn monetary rewards. Inside the blockchain, smart contracts are deployed to fulfill

the data services. Because smart contracts are automated programs executed by all

the service peers, the data services can be provided with reliability. Furthermore, SSE

is employed in smart contracts to preserve privacy. Finally, we propose a bloom filter-

enabled multi-keyword search protocol, which reduces the time delay and financial

cost remarkably. Next, we discuss the challenges in designing our system and the

proposed approaches to overcome them.

The first challenge is to set up an encrypted database without violating the cost limit

rule in smart contracts [5]. That is, the service peers contribute their computational

resources to maintain the state of the smart contracts. Such work is not free since each

operation in the smart contract, e.g., adding two numbers and storage to the local

disks, takes certain costs. To guarantee the validity of a smart contract, the cost for a

single transaction is bounded, which is called the cost limit rule. In the setup phase,

a large number of encrypted data is outsourced to the service peers. In particular, for

each identifier-keyword pair, a reversed and encrypted keyword-identifier pair and a

tag to support multi-keyword search will be generated in our algorithm. To prevent

the setup operation from violating the cost limit rule, we devise a way to estimate the

number of bytes that will be generated for each identifier-keyword pair and calculate

the number of encrypted data that can be contained in a single transaction. Then,

we slice the encrypted database based on the calculation to comply with the cost

limit rule. Finally, the encrypted keyword-identifier pairs and the tags are randomly

shuffled to prevent data leakage.

The second challenge lies in designing a time- and finance-efficient protocol for multi-

keyword search. As discussed previously, the existing approaches are inefficient in

terms of time delay and financial cost due to the large number of intermediate results.

96

4.1. Privacy-preserving and Efficient Data Management via Blockchain

In this chapter, we design our multi-keyword search protocol based on the insight that

the appearance times of the majority of the keywords are low in the database. First,

we generate a tag for each identifier-keyword pair in the setup phase. Meanwhile,

we build a bloom filter to record all the high-frequency keywords in the database.

In the multi-keyword search phase, we use the bloom filter to find a low-frequency

keyword from the search request and use it to filter the database. Note that most

of the keywords will be excluded from the result since the selected keyword is of low

frequency. Finally, we use the tag of each identifier-keyword pair to check whether

each candidate identifier meets the search request.

The rest of this chapter is organized as follows. In Section 4.1, we introduce the

system architecture and the protocols of setup, addition, deletion, and multi-search.

In Section 4.2, we conduct extensive experiments to evaluate the performance of our

protocols in terms of time delay and financial cost. Finally, Section 4.3 discusses the

related work and Section 4.4 concludes the chapter.

4.1 Privacy-preserving and Efficient Data Manage-

ment via Blockchain

4.1.1 System Overview

There are two actors in the blockchain-based data management system, i.e., service

peer and data owner. The service peers are individual nodes in the blockchain network

who are renting out computational resources to earn monetary rewards. Data owners

are the service requesters who want to outsource their data and later enjoy content

update and search services.

There are four kinds of actions between the two actors, i.e., setup, addition, deletion,

and search. The formal definition of each action is described as follows.

97

Chapter 4. Multi-keyword Search

• Setup. The data owner outsources a database W = {(idi, wi)|i = 1, 2, · · · , l},

a list of l identifier-keyword pairs to the service peers. Each idi ∈ {0, 1}µ is a

string of certain length while each wi ∈ {0, 1}∗ is a string of uncertain length.

In the later sections, we will use l, m, and n to notate the number of identifier-

keyword pairs, keywords, and identifiers respectively.

• Addition. The data owner adds a set of identifier-keyword pairs {id,Wa} to the

database W , where Wa is a set of keywords.

• Deletion. The data owner deletes a set of identifier-keyword pairs {id,Wd} from

the database W , where Wa is a set of keywords.

• Search. The data owner sends Ws = {w1, w2, · · · , wk} to the service peers to

find out all the identifiers ids such that there exists w ∈ Ws and (id, w) ∈ W .

data owner

encrypted data

and operations

write data

read result

smart contract

blockchain network

confirm

transactions

blockchain

Figure 4.1: System overview

The flowchart of the actions is demonstrated in Figure 4.1. When the data owners

perform the operations of setup, addition, deletion, or search, they will send one

or more transactions containing the encrypted data and operations to the service

98

4.1. Privacy-preserving and Efficient Data Management via Blockchain

peers. The service peers process the transactions and pack the transactions into the

blockchain. After the transaction is confirmed into the blockchain, the service peers

will perform the operations which write data to the smart contract. Finally, the data

owners can get the results according to the state of the smart contract.

Algorithm 4 Initialization

Service Peers on Initializing the Smart Contract:

1: Allocate a dictionary Dori

2: Allocate two sets Sdel and Stag

3: Allocate two lists Flag and Result

4: Set balance to be B, the money deposited by data owner

We design privacy-preserving and reliable protocols to fulfill the four actions described

in the following subsections1. Before the illustration of the four actions, we first

demonstrate the initialization of the smart contract as shown in Algorithm 4. The

smart contract stores five variables, a dictionary Dori, two sets two sets Sdel and Stag,

and two lists Flag and Result for future usage, in which Dori is to store encrypted

keyword-identifier pairs, Sdel and Flag are to support dynamic update of the database,

Stag is to support multi-keyword search, and Result is used for storage of the search

result. Finally, the balance of the smart contract is set to be B, which is the money

deposited by the data owner. The operations cannot cost more than B in the future.

4.1.2 Database Setup

After initializing the smart contract, the data owner can set the database up as shown

in Algorithm 5. The data owner aims to store a set of identifier-keyword pairs. First,

the data owner generates four secret keys K, K+, K−, and KT . The four keys are

all of size λ, which is an adjustable security parameter. Then, for each keyword w,

derives two keys K1 and K2 are derived from a predefined pseudorandom function

1The protocols of addition and deletion are omitted due to page limit.

99

Chapter 4. Multi-keyword Search

(PRF) [59] F and the secret key K. The key K1 is to derive pseudorandom labels for

the keywords while the key K2 is to encrypt the identifiers. Using the keyword w, we

can get all the identifiers that are associated with w, which is notated as a set Ww.

Afterward, we iterate the identifiers id over Ww. For each id, the PRF F is applied

to a counter c using the key K1 to generate a pseudorandom label l. Meanwhile, we

use K2 to encrypt id using K2 and get the encrypted identifier d. Then, we add the

keyword-identifier pair (l, d) to a list L.

To summarize, we reverse each identifier-keyword pair to an encrypted keyword-

identifier pair and store the result in a list L. Besides this, we generate a unique

tag for each identifier-keyword pair (id, w) by applying the PRF F over w and id

sequentially using the secret key KT . The tags are accumulated into the list Ltag.

Note that the tags are used for the multi-keyword search.

The data owner has to send the database to the service peers after encryption. How-

ever, the encrypted database has to be sliced before sending due to the cost limit rule

in the smart contract. Generally, each operation in smart contract takes a specific

cost, and there is a cost limit for each transaction sent to the smart contract. As a

result, the number of data that can be attached for each transaction is limited. In

our protocol, the data generated for each identifier-keyword pair is designed to be

bounded, i.e., a keyword-identifier pair and a tag. The size of the keyword-identifier

pair and the tag will be fixed, e.g., 512 bits and 256 bits respectively, if the PRF F

is fixed, e.g., HMAC-SHA256 [95].

As a result, we can calculate the maximum number δ of identifier-keyword pairs that

can be handled in one transaction. Assume that the PRF F digests message into δf

bits and the number of bits that can be stored in a single transaction to be δt. Then,

the value of δ should be bδt/(3δf)c. In this chapter, at most 10KB can be stored in

a transaction and HMAC-SHA256 is used as the PRF. As a result, δt equals 80, 000,

δf equals 256, and δ is calculated to be 104. When the counter reaches δ, we shuffle

the lists L and Ltag, and send a transaction of setup containing them to the service

100

4.1. Privacy-preserving and Efficient Data Management via Blockchain

Algorithm 5 Setup
Data Owner on Setting W up:

1: (K,K+, K−, KT) ← ({0, 1}λ, {0, 1}λ, {0, 1}λ, {0, 1}λ)

2: Allocate two lists L and Ltag

3: Allocate two local dictionaries Dcount and Dkey

4: count ← 0

5: for each keyword w ∈ W do

6: K1||K2 ← F (K,w)

7: KT
w ← F (KT , w)

8: c ← 0

9: for each id ∈ Ww do

10: l ← F (K1, c)

11: d ← Enc(K2, id)

12: c ← c+ 1

13: tag ← F (KT
w , id)

14: Append (l, d) to L

15: Append tag to Ltag

16: if count ≥ δ then

17: Shuffle L and Ltag randomly

18: Send (Setup, L, Ltag) to the service peer

19: count ← 0

20: Empty L and Ltag

21: end if

22: end for

23: cw ← Get(Dkey, w)

24: if cw = ⊥ then cw ← 0 end if

25: Set(Dkey, w, cw + c)

26: end for

101

Chapter 4. Multi-keyword Search

27: Sort all the keywords w ∈ W according to Get(Dkey, w) in descending order to

get a list of keywords Ws

28: Allocate a list bf of α 0/1 bits initialized to be all 0

29: for each keyword w in the first β percentage of Ws do

30: bf ← (H(w) | bf)

31: end for

32: Send (Setup, L, Ltag) to the service peer

33: Store K, K+, K−, KT , bf , and Dcount locally

Service Peers on Receiving (Setup, L, Ltag):

34: Add all the elements (li, di) in L to the dictionary Dori with l as the key and d

as the value

35: Add all the elements in Ltag to the set Stag

peer. The reason for shuffling L and Ltag is to prevent the service peers from inferring

any information related to the data. For example, L and Ltag are in the same order

with regard to each identifier-keyword pair. After sending each setup transaction, the

counter will be reset to be 0 and that lists L and Ltag will be emptied. Note that

there are additional operations related to the bloom filter bf , which will be explained

in the later subsections.

From the perspective of the service peers, they are receiving several transactions of

setup together with two lists L and Ltag. For each transaction, they enumerate the

elements (li, di) in the list L and add it into the dictionary Dori with li as the key

and di as the vale. Afterward, they store all the elements in Ltag to the set Stag in

the smart contract. We can see that the data is stored in the smart contract with

unordered data structures, i.e., dictionary and set. Therefore, the setup protocol is

immune to the order of the transactions received, which is a notable feature.

102

4.1. Privacy-preserving and Efficient Data Management via Blockchain

4.1.3 Dynamic Update

The data owner may update the database after setting it up. We discuss the two

kinds of update operations, i.e., addition and deletion, separately in our protocol. In

general, a set of deleted elements in Sdel will be maintained in the smart contract.

For each operation of addition and deletion, the data owner will instruct the service

peers the way to update Sdel. The protocols of addition and deletion are shown in

Algorithm 6 and Algorithm 7 respectively.

Algorithm 6 Addition

Client on Adding (id,Wa) to W :

1: Allocate two lists L and Ltag

2: for each w ∈ Wa do

3: K+
1 ||K+

2 ← F (K+, w)

4: K−1 ← F (K−, w)

5: c ← Get(Dcount, w)

6: if c = ⊥ then c← 0 end if

7: l ← F (K+
1 , c)

8: d ← Enc(K+
2 , id)

9: delid ← F (K−1 , id)

10: tag ← F (F (KT , w), id)

11: Append (l, d, delid) to L

12: Append tag to Ltag

13: end for

14: Shuffle L and Ltag randomly

15: Send (Add, L, Ltag) to the service peer

16: Wait for value change of Flag

17: i ← 1

In the protocol of addition, the data owner aims to add a set of keywords Wa to an

103

Chapter 4. Multi-keyword Search

18: for each w ∈ Wa do

19: if the i-th bit of Flag is 0 then

20: c ← Get(Dcount, w)

21: c ← c+ 1

22: Dcount ← Dcount ∪ {(w, c)}

23: end if

24: i ← i+ 1

25: end for

Service Peers on Receiving (Add, L, Ltag):

26: Add all the elements in Ltag to Stag

27: Allocate a list F of |L| bits

28: i ← 1

29: for each (l, d, delid) ∈ L do

30: if delid ∈ Sdel then

31: Set the i-th bit of F to be 1

32: Sdel ← Sdel \ {delid}

33: else

34: Set the i-th bit of F to be 0

35: Dori ← Dori ∪ {(l, d)}

36: end if

37: i ← i+ 1

38: end for

39: Flag ← F

104

4.1. Privacy-preserving and Efficient Data Management via Blockchain

identifier id. Note that in Algorithm 5, the data owner initializes an empty dictionary

Dcount, which is used to keep the latest counters of all the keywords. For id and each

keyword w ∈ Wa to be added, the data owner will first fetch the counter of w in the

dictionary Dcount. If the counter does not exist, it means w is a new keyword for id

and will be processed; otherwise, the identifier-keyword pair will also be processed

but will make no effect on the existing data. Then, the data owner will use the

key K+ and the counter to derive the pseudorandom label of the keyword l and the

encrypted identifier d. In the meantime, the data owner will generate a delid and

a tag for each identifier-keyword pair, in which delid is used to testify whether the

identifier is previously deleted from the keyword and tag is used for the multi-keyword

search. After processing all the keywords in Wa, the data owner will get a list L of

(l, d, delid) and a list Ltag of tag, send to the service peers for addition, and wait for

the response. Note that the lists L and Ltag should also be shuffled before sending

for privacy reason.

When the service peers receive an addition request along with two lists L and Ltag,

they proceed as follows. First, they add all the elements in Ltag to the dictionary Stag

in the smart contract. Then, for each element (l, d, delid) in the list Ltag, they check

whether delid is in the set Sdel. If so, it means (l, d) is previously deleted from the

database and should be added back to the database now. Under this circumstance,

delid should be removed from the set Sdel to indicate that the deletion of (l, d) is

revoked. Otherwise, it means (l, d) is a new keyword-identifier pair for the database.

In this case, (l, d) will be added into the dictionary Dori with l and d to be the key

and value respectively. At the same time, the service peers should inform the data

owner to update its local counter dictionary Dcount. To do so, the service peers save

a list of |L| 0/1 bits to the variable Flag in the smart contract, in which 0 means

(l, d) is a new keyword-identifier pair. In this way, the data owner can update Dcount

accordingly once the value of Flag in the smart contract changes.

In the protocol of deletion, the data owner aims to delete a set of keywords Wd

105

Chapter 4. Multi-keyword Search

Algorithm 7 Deletion

Data Owner on Deleting (id,Wd) from W :

1: Allocate two lists Ldel and Ltag

2: for each w ∈ Wd do

3: delid ← F (F (K−, w), id)

4: tag ← F (F (KT , w), id)

5: Append delid to Ldel

6: Append tag to Ltag

7: end for

8: Shuffle Ldel and Ltag randomly

9: Send (Delete, Ldel, Ltag) to the service peer

Service Peers on Receiving (Delete, Ldel, Ltag):

10: Add all the elements in Ldel to Sdel

11: Remove all the elements in Ltag from Stag

associated with an identifier id. The protocol of deletion is more concise than the

one of addition. In particular, the data owner derive delid and tag using the key K−

and KT respectively for each (id, w) ∈ Wd. Then, the data owner collects all the

delid and tag into the lists Ldel and Ltag respectively. After shuffling Ldel and Ltag

randomly, the data owner sends them to the service peers for the service of deletion.

On receiving Ldel and Sdel from the data owner, the service peers add their elements

into the set Sdel and Stag respectively, which completes the deletion protocol.

4.1.4 Multi-keyword Search

In the above subsections, we demonstrate the protocols of setup, addition, and dele-

tion, which enables dynamic, reliable, and privacy-preserving storage and update of

the data. In this subsection, we demonstrate the protocol for multi-keyword search

upon the encrypted database.

106

4.1. Privacy-preserving and Efficient Data Management via Blockchain

To begin with our approach, we introduce the way to build the bloom filter which

includes the keywords that frequently appear in the database. In Algorithm 5, we

create a dictionary Dkey to count the appearance time of each keyword, where the

appearance time of a keyword w is defined to be:

F (w,W) = |{(idi, w)|(idi, w) ∈ W}|

A keyword is defined to be high-frequency in a database W if it is in the first β

percentage when sorting {w|w ∈ W} in a non-increasing order according to the

appearance times. A keyword is defined to be low-frequency in W if it is not high-

frequency in W .

For each high-frequency keyword w in W , we use a hash function H to hash w into

an α-bit 0/1 string H(w) and apply bitwise OR operation to bf using H(w). In this

way, bf is a bloom filter containing all the keywords of high frequency. Note that α

and β are parameters that should be fine-tuned to make the bloom filter efficient. A

large value of α increases the storage burden for the data owner while decreases the

false positive rate when judging whether a keyword of high frequency. On the other

hand, a large value of β increases the false positive rate while reduces the cost if true

positive. In this chapter, we set α and β to be 8, 000 and 10% respectively, which is

enough to handle a database of up to 9.1M identifier-keyword pairs.

After setting the bloom filter up, the data owner can use it to find an arbitrary low-

frequency keyword among the k keywords in the search request. If the hash value of

a keyword does not equal to the result of applying bitwise AND operation to itself

with bf , then the keyword must be low-frequency. If such a low-frequency keyword

is found, we swap it with the first keyword in the multi-keyword search request;

otherwise, there is no low-frequency keyword among the k keywords, and the first

keyword will remain high-frequency. Note that we will not make the first keyword to

be high-frequency if it is low-frequency before the operation since no true negative

judgment happens a bloom filter.

107

Chapter 4. Multi-keyword Search

Algorithm 8 Search

Data Owner on Searching (w1, w2, · · · , wk) upon W :

1: for k ← 1 to k do

2: h ← H(wi)

3: if (h & bf) 6= h then

4: Swap w1 and wi

5: Break

6: end if

7: end for

8: K1||K2 ← F (K,w1)

9: K+
1 ||K+

2 ← F (K+, w1)

10: K−1 ← F (K−, w1)

11: for i← 2 to k do KT
i ← F (KT , wi) end for

12: Send (Search, K1, K2, K
+
1 , K

+
2 , K

−
1 , K

T
2 , · · · , KT

k) to the service peer

Service Peers on Receiving (Search, K1, K2, K
+
1 , K

+
2 , K

−
1 , K

T
2 , · · · , KT

k):

13: res ← ∅

14: for c← 0 to ∞ do

15: l ← F (K1, c)

16: d ← Get(Dori, l)

17: if d = ⊥ then Break end if

18: res ← res ∪ {Dec(K2, d)}

19: end for

108

4.1. Privacy-preserving and Efficient Data Management via Blockchain

20: for c← 0 to ∞ do

21: l ← F (K+
1 , c)

22: d ← Get(Dori, l)

23: if d = ⊥ then Break end if

24: res ← res ∪ {Dec(K+
2 , d)}

25: end for

26: for each id ∈ res do

27: delid ← F (K−1 , id)

28: if delid ∈ Sdel then res← res \ {id}

29: else for i← 2 to k do

30: if F (KT
i , id) /∈ Stag then

31: res← res \ {id}

32: Break

33: end if

34: end for end if

35: end for

36: Result ← res

109

Chapter 4. Multi-keyword Search

Now, it comes to the phase of generating encrypted search request by the data owner.

The data owner will take the secret keys K, K+, and K− to generate three pseudoran-

dom labels K1, K+
1 , and K−1 and two symmetric keys K2 and K+

2 for the first keyword

w1. Meanwhile, a tag will be generated for each keyword ki, where i ranges from 2 to

k, using the secret key KT . In this way, an encrypted search request containing three

pseudorandom labels, two symmetric keys, and k− 1 tags will be generated and sent

to the service peers.

On receiving a search request from the data owner, the service peers will start with

the first keyword and get a set of candidate identifiers. In particular, they traverse

Dori in the smart contract using the pseudorandom K1 and K+
1 in sequence. Then,

the service peers accumulate all the counters that exist in the key field of Dori after

encryption using K1 or K+
1 . Afterward, the service peers add the identifiers after

decryption corresponding to each of the accumulated counters using the corresponding

symmetric key. Finally, we deal with the deletion set and the other k − 1 keywords

at the same time. For each of the identifiers id after decryption, we check whether

the encrypted result of id using the pseudorandom deletion label K−1 is in the set of

Sdel and whether any of the k − 1 tags after applying PRF F to id is not in the tag

list Stag. If any of the two conditions hold, id will be excluded from the result.

Finally, we analyze the time delay and financial cost for the traditional method and

our method. In the traditional method, it takes O(l) and generates O(n) identifiers

for each single-keyword search request. Then, it takes an extra O(k · n · log n) time

to calculate the intersection of k sets, each of which is of size O(n). Since the writing

operations dominate the financial cost for a smart contract [103], we approximate the

financial cost as the number of identifiers in the intermediate and final results. Hence,

the time delay and financial overhead are O(k · l+k ·n · log n) and O(k ·n) respectively.

In terms of our method, it takes O(l) to use the first keyword to filter the database.

Then, β · n identifiers will be generated and verified through k − 1 tags, which takes

O(k · β · n) time. Therefore, the time overhead for our approach is O(l + k · β · n).

110

4.2. Experimental Result

In the experiments, we figure that β can be as small as 10%, which reduce the time

complexity remarkably. The financial cost overhead is O(n) since only the final result

will be written to the smart contract.

4.2 Experimental Result

We implement the operations of database setup, dynamic update, and multi-keyword

search in python 2.7 with the PRF implemented by HMAC-SHA256 in the Py-

Cryptodome package and the bloom filter implemented by the pybloom package

[2]. We run both the data owner and the service peers on laptops running Ubuntu

16.04.5 with 16GB RAM and two Intel i7-6500U cores. The service peers form a

local simulated blockchain network, accept the request from the data owner, and run

the smart contract. To focus on the performance of our protocol, we set the block

generation time to be 0, which means the influence of the complex network topology

is not taken into consideration.

0 0.05 0.10 0.15 0.20

10

20

30

40

50

60

70

80

90

100

Percentage of keywords (%)

L
ea

st
 a

p
p

ea
ra

n
ce

 p
er

ce
n

ta
g
e

o
f

k
ey

w
o
rd

s
(%

)

Figure 4.2: Distribution of keyword appearance

111

Chapter 4. Multi-keyword Search

After setting up the experimental environment, we conduct extensive experiments on

the Eron email dataset [93], which consists of 517K emails. The original database is

generated from the dataset as follows. Each email is treated as a new identifier id, and

each word after lowercasing in the email is treated as a keyword associated with id. By

this means, we get a database consisting of 517K identifiers, 622K distinct keywords,

and 9.1M identifier-keyword pairs. The distribution of the keyword appearance is

shown in Figure 4.2. Note that some keywords are associated with all the identifiers

since some words, e.g., “message”, “content”, and “type”, appear in all the emails.

We can see that no more than 0.05% keywords appear in at least 10% identifiers,

which means there are very few high-frequency keywords.

4.2.1 Setup and Update

The experimental results of the operations of setup, addition, and deletion are sum-

marized in Table 4.1. In terms of the setup operation, it takes a large amount of time

and cost to encrypt such a large database and send the encrypted result to the smart

contract through blockchain transactions. At the server side, it takes 272s to encrypt

the database, i.e., to generate L, Ltag, the four secret keys, and the bloom filter bf .

Since the database is of large volume, it takes as many as 42, 356 transactions between

the data owner and the service peers to set the encrypted database up. With regard

to the service peers, they handle the received transactions by local storage, which

takes little time. After accumulating all the transactions, the encrypted database is

of size up to 532MB.

The operations of addition and deletion consumes much less time and few transactions

compared to the one of setup from the perspectives of both the data owner and the

service peers. When the number of keywords to be added or deleted is not too much,

e.g., no more than 20 in our experiments, the addition and deletion can be finished

within 1s. Meanwhile, it takes only a single transaction to complete each operation.

112

4.2. Experimental Result

Table 4.1: With v.s. Without Support of Multi-keyword Search

Ops. Without Support of Multi-keyword Search With Support of Multi-keyword Search

Setup

Data Owner 209s Data Owner 272s

Smart Contract 28, 219 Txs Smart Contract 42, 356 Txs

Service Peer 2.6s Service Peer 3.0s

Encrypted Database 378MB Encrypted Database 532MB

Addition

Data Owner 1.4s Data Owner 2s

Smart Contract 1 Tx Smart Contract 1 Tx

Service Peer 1s Service Peer 1s

Deletion

Data Owner 1s Data Owner 1s

Smart Contract 1 Tx Smart Contract 1 Tx

Service Peer 1s Service Peer 1s

To support multi-keyword search, we add some extra data structure such as the bloom

filter bf , the secret key KT , and the tag list Ltag. As a result, our protocol requires

around 1.5x time, transactions, and storage space compared to those protocols that do

not support multi-keyword search. Fortunately, only the setup operation is affected,

which is acceptable since setup operation happens once throughout the data usage.

As a result, the average time and cost overhead will decrease dramatically with the

increasing number of operations of addition, deletion, and search.

4.2.2 Single-keyword Search

In the single-keyword search operation, the time consumption at the data owner side

can be neglected since only several operations of symmetric encryption are involved.

At the service peer side, it needs to traverse the dictionary Dori twice and write the

data to the local state. We conduct experiments on searching keywords with various

appearance times. The result is shown in Figure 4.3. We can see that 5.12s is needed

when there is no matched identifier, which is the time to traverse the dictionary Dori.

Moreover, it takes 15.10s when all the identifiers are associated with the keyword.

113

Chapter 4. Multi-keyword Search

0 100 200 300 400 500
4

8

10

12

14

16

6

Number of identifiers in the result

S
ea

rc
h

 t
im

e
in

 s
ec

o
n

d
s

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

S
ea

rc
h

 t
im

e
p

er
 i

d
en

ti
fi

er
 i

n
 s

ec
o
n

d
s

0 100 200 300 400 500
Number of identifiers in the result

(a) Search time v.s. #identifiers (a) Search time per identifier v.s. #identifiers

Figure 4.3: Single-keyword search

The search time per identifier decreases as the number of identifiers in the result

increases. The reason is that a large number of identifiers can average the time to

traverse the dictionary.

4.2.3 Multi-keyword Search

We conduct experiments for multi-keyword search over traditional method and our

method for the number of keywords ranging from 2 to 7. The traditional method, or

the intersection method, is to apply single-keyword search multiple times and take

the intersection of the results as the final result. In our method, we set β to be 10

since no more than 0.05% keywords appears in at least 10% identifiers after analysis.

We run the experiments for 50 times and the comparison results in terms of time

and financial overhead are shown in Figure 4.4. Note that extreme cases, e.g., all

the keywords are of high frequencies, are included in the experiments because the

keywords are randomly generated.

114

4.2. Experimental Result

Number of keywords in search request

N
u

m
b

er
 o

f
st

o
re

d
 i

d
en

ti
fi

er
s

(x
1

0
5
)

0

0.5

1.0

1.5

2.0

2.5

3.0

Trad. method

Our method

2 3 4 5 6 7
15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

Number of keywords in search request

S
ea

rc
h

 t
im

e
in

 s
ec

o
n

d
s

2 3 4 5 6 7

(a) Search time v.s. #keywords (b) #stored identifiers v.s. #keywords

Trad. method

Our method

Figure 4.4: Time evaluation for multi-keyword search

In terms of time overhead, the intersection method is significantly affected by the

number of keywords since the intersections of more sets should be calculated when

the number of keywords increases. For our method, the time to execute a multi-

keyword search does not vary too much as the number of keywords increases. The

reason is that there will be few candidate identifiers after filtering the database using

the first keyword. Moreover, only one operation of tag comparison will be added to

the computational burden in case of one more keyword. On average, our method

outperforms the intersection method by 14.67% in terms of time efficiency.

In terms of financial overhead, the major financial cost for search operation lies in

data storage because data storage dominates the cost compared to other operations.

Therefore, we treat the number of identifiers that are written to the state of the

smart contract as the financial cost. For the intersection method, the number of

stored identifiers increases about 60% when the number of keywords increases from

2 to 5 and remains nearly unchanged for 5 and more keywords. The reason is that

there will be few identifiers with the same 5 or more keywords. The financial cost of

115

Chapter 4. Multi-keyword Search

our method decreases when the number of keywords increases since we call the smart

contract and write the result only once. Besides, the number of eligible identifiers

decreases when the number of filtering keywords increase. On average, our method

outperforms the intersection method by 59.96% concerning financial cost.

4.3 Related Work

Searchable symmetric encryption is a technique to enable privacy-preserving and

secure search over encrypted data between client and server [149]. The research com-

munity has been devoted this area for enabling dynamic operations [85], supporting

boolean queries [84], and extending to graph database [117]. However, none of these

research works considers dishonest servers. Verifiable searchable encryption has the

same target as SSE while considering the dishonest servers. The researchers enable

the client-side verification by introducing verifiable hash table [21]. Nevertheless, the

client is assumed to be honest in their works. Moreover, the client takes non-negligible

efforts to verify the results from the servers. In recent years, the research community

introduces blockchain to searchable encryption to solve the dishonesty issue of both

the client and server[70][185][23][28]. However, they focus on the financial fairness be-

tween the miners in blockchain and the clients and suffer from privacy and efficiency

issues when extended to multi-keyword search.

4.4 Chapter Summary

In this chapter, we present a blockchain-based data management system with func-

tions of privacy-preserving and efficient database setup, dynamic update and multi-

keyword search. The technique to divide the encrypted database into several pieces in

the protocols is general for other blockchain applications. The key contribution lies in

enabling multi-keyword search over encrypted database on blockchain and improving

116

4.4. Chapter Summary

its efficiency in terms of time delay and financial cost. To do so, we propose to use

a bloom filter to find out a low-frequency keyword and filter the encrypted database

using the keyword, which significantly narrows down the searching space. The future

work can be tuning the parameters in the bloom filter to further enhance efficiency.

117

Chapter 5

Dynamic Ring Signature

A limitation to modern elections is that the voters are required to be physically present

at the polling booth to cast their vote, which is not convenient at all. Electronic voting

(e-voting), in which electronic means are leveraged to take care of the procedure of

casting and counting votes, can address the issue of inconvenience and promote voter

participation significantly. In addition to convenience, e-voting is environmentally

friendly, increases the speed of tallying votes, and eliminates ambiguities [120].

Although e-voting provides many distinctive features, traditional e-voting systems

[141][12][39] suffer a lot with regards to auditability and immutability [37]. In partic-

ular, they are manipulated by centralized sectors who can fake electronic identities

[38] and even tamper the ballot tickets from the voters [40] with great ease. Moreover,

the voters have no guarantees that their votes are counted due to non-transparency

[35]. Finally, the e-voting machines can be vulnerable to tampering by entities other

than the authorities. For example, WINVote touchscreen machines, which were used

in the 2016 US elections, were reported to be easily hacked within half a mile1.

Recently, blockchain, a technology for trustless data storage with auditability, shows

great potential in e-voting systems. In particular, the ballot information will be

1WIRED: America’s Electronic Voting Machines Are Scarily Easy Targets

118

https://www.wired.com/2016/08/americas-voting-machines-arent-ready-election/

publicly auditable and can hardly be tampered once stored on blockchain. With

the maturity of blockchain technology, blockchain-based e-voting systems (BEVs) are

gradually adopted by community, city, and even national voting [96]. For example,

West Virginia made history in 2018 when it became the first state to employ BEV

in a federal election2. Furthermore, governments around the world, e.g., Thailand,

South Korea, Sierra Leone, and India, have been experimenting with BEVs3.

In the beginning, the e-voting systems are constructed based on Bitcoin system

[187][18]. These systems cannot guarantee anonymity because Bitcoin pseudo-anonymous

with no guarantee on anonymity [119]. Later on, the researchers have been seeking

cryptographic methods such as zero-knowledge proof, blind signature, and linkable

ring signature, for anonymous blockchain-based e-voting (BEV) system. However, the

e-voting systems based on zero-knowledge proof [116] or blind signature [62] either

incur high computational complexity or sacrifice auditability.

One of the notable advances in anonymous BEV is the employment of linkable ring

signature [179]. In particular, a voter adds some other voters, i.e., mixins, when

signing a ballot so that the public can verify the signature but cannot identify the

exact voter. Linkable ring signature, which is used in the most famous anonymous

cryptocurrency Monero [123][151], seems to be perfect for anonymous BEV. Indeed,

anonymity can be preserved in a single ballot. However, the anonymity will be com-

promised when taking a number of transactions or ballots into consideration [97][181].

In particular, up to 94.39% of the voters will be de-anonymized when there are 100

voters, and each ballot contains 2 mixins according to our experiments whose results

are shown in Figure 5.4.

In this chapter, we present Roshan, a BEV system with auditability, immutability,

and anonymity. We propose dynamic ring signature, the first ring signature scheme for

e-voting with provable anonymity. The key idea of dynamic ring signature is to select

2CoinDesk: West Virginia to Offer Blockchain Voting Statewide in Midterm Elections
3CoinDesk: Moscow Said to Hire Kaspersky to Build Voting Blockchain With Bitfury Software

119

https://www.coindesk.com/west-virginia-to-offer-blockchain-voting-statewide-in-midterm-elections
https://www.coindesk.com/moscow-said-to-hire-kaspersky-to-build-voting-blockchain-with-bitfury-software

Chapter 5. Dynamic Ring Signature

mixins intentionally rather than randomly as in traditional approaches. In particular,

we first present a network flow-based algorithm to check whether the anonymity is

compromised for a given e-voting system. Then, we propose a time-efficient heuristic

algorithm to select mixins for a new ballot. The algorithms of anonymity validation

and mixin selection constitute dynamic ring signature. The main contributions of

this chapter are as follows:

• We present Roshan, a BEV framework taking the three essential elements of

e-voting, i.e., auditability, immutability, and anonymity, into account.

• We propose dynamic ring signature, the first anonymous mechanism for BEV

systems with rigorous proof. Such an anonymous mechanism can also be gen-

eralized for usage in cryptocurrencies.

• We analyze the time complexity and of dynamic ring signature and the number

of mixins required to preserve anonymity. The experimental results indicate

that dynamic ring signature is time-efficient and only requires few mixins to

provide provable anonymity.

The rest of this chapter is organized as follows. In section 5.1, we demonstrate Roshan,

a BEV framework considering auditability, immutability, and anonymity. The key

technical depth lies in section 5.2.1, in which we present dynamic ring signature,

an anonymous mechanism for BEV. The time complexity analysis and experimental

results are shown in section 5.3. Finally, section 5.4 summarizes existing works and

section 5.5 concludes the chapter.

5.1 System Architecture

The system architecture of Roshan, a reliable and anonymous e-voting system, is

demonstrated in Figure 5.1. Roshan is composed of four entities, i.e., identity authen-

120

5.1. System Architecture

tication center (IAC), ballot organizer (BO), ballot machines (BMs), and blockchain

(BC). In brief, BO is the organization to initiate a voting competition, IAC is respon-

sible for identity authentication, BMs are the voters, and BC serves as the storage

platform. In the following, we illustrate how Roshan works after the initiation of a

voting competition.

Identity Authentication

Center (IAC)

Blockchain

(BC)

Ballot Machine

(BM
i
)

Ballot Organizer

(BO)

Authenticate IDI and Generate

Signature Sig(IAC, IDI)

Send Identity Information (IDI)

Send (Sig(IAC, IDI))

Record RI

on blockchain

Asymmetric Key Pair

(Pk
i
, Sk

i
) Genertion

Verify Sig(IAC, IDI) and Generate

Signature Sig(BO, IDI, Pk
i
)

Send (IDI, Pk
i
, Sig(IAC, IDI))

Send Registration Information (RI)

(IDI, Sig(IAC, IDI), Pk
i
, Sig(BO, IDI, Pk

i
))

Record BI

on blockchain

Determine Votee C
i
,

Generate Dynamic Ring Signature

DSig(Sk
i
, Pk

i
, Pk

1
,..., Pk

m
,C

i
)

Send Ballot Information (BI)

(C
i
, DSig(Sk

i
, Pk

i
, Pk

1
, ..., Pk

m
,C

i
))

Phase I:

Ballot

Registration

Phase II:

Ballot

Submission

Figure 5.1: System architecture

As a voter, the procedure of e-voting can be divided into two phases, i.e., ballot

registration and ballot submission, as shown in Figure 5.1. In Phase I, each BM

requests an empty ballot from BO by showing the identity authentication result from

IAC. Such a process is called ballot registration, and the registration information is

stored on blockchain. In Phase II, each BM fills in the empty ballot and signs it

with dynamic ring signature to guarantee anonymity. The filled ballot, represented

as ballot information, is also stored on blockchain. It enables auditability to store

both the registration information and the ballot information on blockchain.

Asymmetric encryption is used for signature generation and verification in Phase I.

121

Chapter 5. Dynamic Ring Signature

Particularly, the public keys of IAC and BO, i.e., Pkiac and Pkbo, are public to all

the entities while their private keys, i.e., Skiac and Skbo, are held on their own. First,

the IAC authenticates the identity information (IDI) sent from a BM and endorse

the IDI using Skiac if valid. Note that the validation rule for IDI is predefined by

the BO, e.g., the requirement for a legal passport. The endorsement of IAC, i.e.,

Sig(Skiac, IDI), will be sent back to the corresponding BM. Then, the BM generates

an asymmetric key pair Pki and Ski, in which Pki represents its identity, and Ski is

used for the signature. Afterward, the BM sends its public key Pki, it IDI, and the

endorsement of IAC to the BO. On receiving such information, the BO will verify the

endorsement of IAC using Pkiac and generate signature Sig(Skbo, IDI, Pki). Finally,

IDI, Pki, the endorsement of IAC, and the endorsement of BO will be packed as the

registration information (RI) and recorded on blockchain.

In a piece of RI, IDI and the endorsement of IAC guarantees identity authenticity.

Moreover, one valid identity can only bound with one public key Pki, which avoids

multiple voting by one person. Finally, the endorsement of BO gives birth to a new

empty ballot and serves as proof to prevent repudiation. The RI stored on blockchain

can be accessed by all the entities in Roshan including the BM. As a result, the BM

can notice the empty ballot and fill in it using its private key Ski, which is exactly

what Phase II achieves.

In Phase II, the voter, i.e., the owner of BM, determines the supporting candidate and

signs the ballot. Afterward, the signed ballot will be stored on blockchain for publicity.

The transparency of ballot information (BI) increases the trustworthiness of the voting

process. However, the identity of the voter will be exposed if traditional asymmetric

encryption is employed as the signature algorithm. This is because the public key of

the voter, which is used to sign the ballot, is associated with his/her identity in the

publicly accessible RI. Such an identity exposure disobeys the anonymity requirement

and brings out the privacy issue. In this chapter, we propose a new signature scheme,

namely dynamic ring signature, to take good care of anonymity.

122

5.2. Provable Anonymity via Dynamic Ring Signature

5.2 Provable Anonymity via Dynamic Ring Signa-

ture

In this section, we introduce dynamic ring signature, the key algorithm to guarantee

anonymity in Roshan. First, we give the preliminary about ring signature and a

concrete example showing that the existing ring signature is not enough for anonymity

and define terminologies such as ballot, e-voting system, ballot assignment, intention,

and anonymity. Then, we introduce the problem anonymity validation based on the

terminologies and present MFAV, an algorithm to solve it. Finally, we introduce the

problem mixin selection and present algorithm HeurMS to solve it.

5.2.1 Introduction to Ring Signature

Ring signature [136] is a type of digital signature that can be performed by any

member of a group of entities. That is, a message signed with a ring signature

is endorsed by someone in a particular group of identities. Consider a group of n

entities e1, e2, · · · , en, each of which has a public/private key pair (Pki, Ski). Entity

ei can compute a ring signature σ = Sig(m,Ski, Pk1, Pk2, · · · , Pkn) for a message m

such that given σ, m, and (Pk1, Pk2, · · · , Pkn),

• everyone can validate that σ is generated by one of the entities e1, e2, · · · , en;

• if n > 2, no one knows σ is generated by ei except ei itself; and

• it is hard for anyone to create σ without knowing one of the private keys

Sk1, Sk2, · · · , Skn.

Linkable ring signature [111] is derived from ring signature by adding the prop-

erty of linkability, which allows one to determine whether any two signatures have

been produced by the same entity. Consider entity ex with key pairs (Pkx, Skx)

123

Chapter 5. Dynamic Ring Signature

in two groups G1 and G2. Entity ex can compute two linkable ring signatures

σ1 = Sig(m1, Skx, PkG1) and σ2 = Sig(m2, Skx, PkG2), in which PkG1 and PkG2

are the lists of public keys of the two groups G1 and G2. Besides the properties of

ring signature, the linkability makes it identifiable that σ1 and σ2 are generated from

the same entity, in particular, the one with public key Pkx. Linkable ring signature is

used in anonymous cryptocurrencies such as Monero [151]. In linkable ring signature,

the public keys, i.e., PkG1 and PkG2 , are called mix-in public keys, or mixins in short.

5.2.2 Example & Terminologies

It seems enough to guarantee anonymity if BI is endorsed using linkable ring signature

as introduced in section 5.2.1. Indeed, anonymity can be preserved in one piece of BI

for sure due to features of linkable ring signature, however, will no longer be preserved

if a set of BI is taken into consideration. An example is given as follows.

Consider two ballots b1 = ({v1, v2}, c1) and b2 = ({v1, v3}, c2), where b1 means one of

v1 and v2 votes for candidate c1, and b2 means one of v1 and v3 votes for candidate

c2. There are three possibilities between the voters and the candidates as follows:

• v1 votes for c1 using b1, v2 does not vote, and v3 votes for c2 using b2;

• v1 votes for c2 using b2, v2 votes for c1 using b1, and v3 does not vote; and

• v1 does not vote, v2 votes for c1 using b1, and v3 votes for c2 using b2.

As a result, the anonymity is preserved because we cannot infer the intention of any

voter. Assume that another ballot b3 = ({v2, v3}, c1), which means one of v2 and

v3 votes for candidate c1, is submitted at this moment. Then there are only two

possibilities between the voters and the candidates as follows:

• v1 votes for c1 using b1, v2 votes for c1 using b3, and v3 votes for c2 using b2; and

124

5.2. Provable Anonymity via Dynamic Ring Signature

• v1 votes for c2 using b2, v2 votes for c1 using b1, and v3 votes for c1 using b3.

In both cases, v2 votes for c1, which means the anonymity is compromised. In the

example, all the ballots are submitted using linkable ring signature. However, the

anonymity is no longer preserved as the ballots accumulate. It means linkable ring

signature is not enough for anonymity. In the following, we introduce dynamic ring

signature proposed in Roshan to assure anonymity.

Dynamic ring signature consists of two main components, which are anonymity vali-

dation and mixin selection. The core idea is to generate some mixins for linkable ring

signature randomly, validate whether the anonymity is compromised, and select new

mixins if necessary. To introduce the algorithm, we start from the formal definition

of e-voting systems, ballots, ballot assignment, intention, and anonymity.

Definition 11. An e-voting system E = {V , C,B} consists of a set V = {v1, v2, · · · , vn}

of n voters, a set C = {c1, c2, · · · , cm} of m candidates, and a set B = {b1, b2, · · · , bk}

of k ballots.

Initially, B is empty. As the voting activity proceeds, new ballots submitted by voters

in V are added to B while V and C remains unchanged. Note that each voter can

submit at most one ballot. As a result, k ≤ n.

Definition 12. In an e-voting system E = {V , C,B}, a ballot bi = (Vi, Ci) consists of

a non-empty set Vi = {v1
i , v

2
i , · · · , v

li
i } of voters and a candidate Ci, in which Vi ⊂ V

and Ci ∈ C.

In the definition, Vi are the mixins of the ballot bi such that everyone knows one voter

in Vi submit bi but no one knows which one. In a ballot, the number of mixins is not

bounded while the number of candidate is constrained to be 1.

Definition 13. In an e-voting system E = {V , C,B}, a ballot assignment is defined

to be an injective function M : B → V from B to V with properties as follows:

125

Chapter 5. Dynamic Ring Signature

• ∀bi ∈ B,M(bi) ∈ Vi; and

• ∀bi, bj ∈ B, bi 6= bj ⇒M(bi) 6=M(bj).

In the definition, the first condition means that each ballot must come from a voter in

the mixins, and the second condition means that each voter can submit at most one

ballot. There are many possibilities that a ballot comes from because of the mixins.

As a result, there can be many possibilities that a set of ballots come from. A ballot

assignment stands for one of the possibilities, i.e., to assign each ballot with a voter.

Note that there should be at least one ballot assignment given an e-voting system.

Definition 14. In a ballot assignment M of an e-voting system E = {V , C,B}, the

intention φMi of a voter vi ∈ V is defined as follows:

• if there is a ballot bj ∈ B such that M(bj) = vi, then φMi = Cj;

• otherwise, φMi = ⊥, which means the intention of vi is unclear.

Given a ballot assignment, we can be aware of the intentions of some voters. Then,

we can claim that the anonymity is compromised if the intentions of some voters are

clear and remain the same regardless of the ballot assignments. Formally speaking,

the anonymity of an e-voting system is defined as follows.

Definition 15. Given an e-voting system E = {V , C,B}, its anonymity is com-

promised if there is a voter vi ∈ V such that for all ballot assignments M1, · · · ,Mt

of E, φM1
i = φM2

i = · · · = φMt
i 6= ⊥. The anonymity is preserved if not compro-

mised.

5.2.3 Anonymity Validation

Given the definition of e-voting system, ballot, ballot assignment, intention, and

anonymity, we can define the problem of anonymity validation as follows.

126

5.2. Provable Anonymity via Dynamic Ring Signature

Problem 1. Anonymity validation: given an e-voting system E = {V , C,B},

determine whether its anonymity is compromised.

According to the definition of anonymity, an intuitive solution to anonymity validation

is to find all the ballot assignments and check whether the intention of each voter

is unclear or variant. However, such an approach is time-consuming because the

number of ballot assignments can be up to Πk
i=1li, in which li is the number of mixins

in ballot bi. Because li can be up to n, the intuitive approach takes exponential time,

in particular, O(nk · n).

Algorithm 9 GC: Graph Construction
Input: E : an e-voting system

Output: G: a weighted directed graph

1: G ← an empty graph with vertex set VG and edge set EG

2: Add a source vertex S and a sink vertex T to VG

3: for i← 1 to n do . each voter

4: Add a vertex ai to VG with label vi

5: Add an edge (S, ai, 1) to EG

6: end for

7: for i← 1 to k do . each ballot ({v1
i , · · · , v

li
i }, Ci)

8: Add a vertex bi to VG with label Ci

9: Add an edge (bi, T, 1) to EG

10: for j ← 1 to li do . each mixin

11: Add an edge (u, bi, 1) to EG, in which u is the vertex with label vji

12: end for

13: end for

14: return G

In this chapter, we propose a time-efficient algorithm MFAV, which solves anonymity

validation in polynomial time. In MFAV, we construct a directed weighted graph

127

Chapter 5. Dynamic Ring Signature

Algorithm 10 MFAV: Anonymity Validation

Input: E : an e-voting system; MF: a maximum flow algorithm

Output: If anonymity is compromised in E , output (vi, cj) indicating vi vote for cj

in all ballot assignments; otherwise, output ⊥ indicating anonymity is preserved

1: δ ← MF(GC(E))

2: for i← 1 to n do . voter vi

3: for j ← 1 to m do . candidate cj

4: E ′ ← E

5: for u← 1 to k do . ballot ({v1
u, · · · , vluu }, Cu)

6: if Cu = cj then

7: remove vi from E ′.B.bu.Vu if exists

8: end if

9: end for

10: δ′ ← MF(GC(E ′))

11: if δ > δ′ then

12: return (vi, cj)

13: end if

14: end for

15: end for

16: return ⊥

128

5.2. Provable Anonymity via Dynamic Ring Signature

according to the input e-voting system and solve anonymity validation using maxi-

mum flow theory. In particular, we prove that for an e-voting system, the maximum

flow of the constructed graph equals the number of ballots. Moreover, there is a

one-to-one correspondence between the ballot assignments and the maximum flow

solutions. Then, we assume that the intention of voter vi is not candidate cj for all

ballot assignments. With this assumption, we can prune the e-voting system, i.e.,

delete voter vi from all the ballots whose candidate is cj, and get a new e-voting

system. Note that the new e-voting system can be invalid because modifications are

made upon the ballot set. We compare the maximum flow of the constructed graph of

the new e-voting system and the number of ballots. If not equal, it means there is no

ballot assignment for the new e-voting system, which means the new e-voting system

is invalid. Therefore, the assumption does not hold, and the intention of vi is cj in

all ballot assignments of the original e-voting system. According to the definition of

anonymity, the anonymity of the original e-voting system is compromised.

v
1

v
2

v
3

S

c
1

c
2

T

v
1

v
2

v
3

S

c
1

c
2 T

c
1

(a) b
1
 and b

2
(b) b

1
 , b

2
 and b

3

Figure 5.2: Example construct graphs (b1 = ({v1, v2}, c1), b2 = ({v1, v3}, c2), b3 =

({v2, v3}, c1))

The graph construction algorithm is shown in Algorithm 9. In short, we first construct

a source vertex, a sink vertex, a vertex for each voter, and a vertex for each ballot,

then add edges between the voters and the ballots based on the ballot information.

Example constructed graphs are shown in Figure 5.2.

129

Chapter 5. Dynamic Ring Signature

Theorem 9. For an e-voting system, the maximum flow of the constructed graph

equals to the number of ballots.

Proof. Notate the e-voting system as E = {V , C,B} in which |V| = n, |C| = m, |B| = k.

Notate the constructed graph according to Algorithm 9 as G.

On one hand, the maximum flow is no larger than k as shown below. In Algorithm

9, only line 9 constructs edge linked with the sink vertex T . In particular, line 9

runs for k times in the loop of line 7. Therefore, the input flow of sink vertex T is

at most k in the constructed graph G. One the other hand, there is a flow of size k

in the constructed graph G. Consider an arbitrary ballot assignment M for E . For

each ballot bi = (Vi, Ci), there is an edge between bi and M(bi) because M(bi) ∈ Vi
(definition) and bi is linked with all the vertices in Vi (line 11). Moreover, M(bi) is

linked with S is M(bi) ∈ V (definition) and S is linked with all the vertices in V

(line 5). Finally, bi is linked with T as shown in line 9. As a result, there is a flow

S−M(bi)−bi−T of size 1 for each ballot bi. Nevertheless, all theM(bi) are different

according to the definition of ballot assignment, which means the flows do not share

any edge. Because there are k ballots, so the total flow is of size k.

Because the maximum flow is no larger than k and a flow of size k is constructed in G,

we can conclude that the maximum flow of G is k, which is the number of ballots.

Theorem 10. For an e-voting system, there is an one-to-one correspondence between

the ballot assignments and the maximum flow solutions for the constructed graph using

Algorithm 9.

Proof. On one hand, we construct a maximum flow solution for each ballot assignment

according to the proof for Theorem 9. On the other hand, we construct a ballot

assignment for each maximum flow solution, which is demonstrated as follows.

Notate the e-voting system as E = {V , C,B} in which |V| = n, |C| = m, |B| = k.

Notate the constructed graph according to Algorithm 9 as G. Consider an arbitrary

130

5.2. Provable Anonymity via Dynamic Ring Signature

maximum flow solution F in G. The size of F must be k according to the proof

for Theorem 9. Because there are n > k vertices a1, · · · , an linked to the source

vertex S and the edges are all of weight 1, the solution F should contain k edges

(S, aσ1 , 1), · · · , (S, aσk , 1), in which {σ1, · · · , σk} is a subset of size k of {1, · · · , n}.

Note that the label of vertex aσi is vσi . Because there are k vertices b1, · · · , bk linked

to the sink vertex T and the edges are all of weight 1, the solution F should contain

k edges (b1, T, 1), · · · , (bk, T, 1). In order to connect two vertex sets {aσ1 , · · · , aσk}

and {b1, · · · , bk}, the solution F should contain k edges in between . Without loss of

generality, we assume the edges are (aσ1 , b1, 1), · · · , (aσk , bk, 1), in which vσi ∈ Vi. As

a result, the solution F is a collection of edges F = {(S, aσi , 1), (aσi , bi, 1), (bi, T, 1) |

i = 1, · · · , k}.

Based on F , we can construct a functionM, in whichM(bi) = vσi for each (aσi , bi, 1) ∈

F . The function M is an injective function from B to V because:

• For each bi ∈ B, (aσi , bi, 1) ∈ F and vσi ∈ Vi. Hence, ∀bi ∈ B,M(bi) = vσi ∈ Vi;

and

• ∀bi, bj ∈ B, if bi 6= bj, then M(bi) = vσi 6= vσjM(bj).

Therefore, M : B → V is a ballot assignment constructed from the maximum flow

solution F . The two constructions demonstrate the one-to-one correspondence rela-

tionship, which completes the proof.

An example of the one-to-one correspondence between the ballot assignments and

maximum flow solutions is shown in Figure 5.3. There are three ballots, i.e., b1 =

({v1, v2}, c1), b2 = ({v1, v3}, c2), and b3 = ({v2, v3}, c1), in the example e-voting system

and exactly two ballot assignments for it. In the first ballot assignment, b1 is sent

by v1, b2 is sent by v3, and b3 is sent by v2, which are represented as red, blue, and

yellow paths in Figure 5.3(a). Note that the colored edges in Figure 5.3(a) are also a

maximum flow solution for the graph. Similarly in the second ballot assignment, b1

131

Chapter 5. Dynamic Ring Signature

v
1

v
2

v
3

S

c
1

c
2 T

c
1

v
1

v
2

v
3

S

c
1

c
2 T

c
1

(a) b
1
→

v

1
, b

2
→

v

3
, b

3
→

v

2
(b) b

1
→

v

2
, b

2
→

v

1
, b

3
→

v

3

Figure 5.3: Example ballot assignments and maximum flow solutions for {b1 =

({v1, v2}, c1), b2 = ({v1, v3}, c2), b3 = ({v2, v3}, c1)}

is sent by v2, b2 is sent by v1, and b3 is sent by v3. The corresponding maximum flow

solution is showcased in Figure 5.3(b).

Next, we explain the correctness of Algorithm 10. First, we explain the construction

of a new e-voting system E ′(vi, cj) given a voter vi and a candidate cj in an e-voting

system E as follows:

• E ′.V ← E .V ;

• E ′.C ← E .C;

• for each ballot ({v1
u, · · · , vluu }, Cu), E ′.B.bu.Cu ← E .B.bu.Cu; and

• for each ballot ({v1
u, · · · , vluu }, Cu), if Cu = cj, then E ′.B.bu.Vu ← E .B.bu.Vu\{vi};

otherwise, E ′.B.bu.Vu ← E .B.bu.Vu.

Such a construction is showcased in Algorithm 10 from line 4 to 9. In short, E(vi, cj)

deletes all the possibilities that vi votes for cj from E .

Theorem 11. In an e-voting system E = {V , C,B}, for an arbitrary voter vi ∈ V

and an arbitrary candidate cj ∈ C, the maximum flow of GC(E ′(vi, cj)) is of size |B|,

if and only if there is a ballot assignment M of E such that φMi 6= cj.

132

5.2. Provable Anonymity via Dynamic Ring Signature

Proof. The theorem can be expressed as a logic formula as follows:

∀vi, cj, (∃M, φMi 6= cj)⇔MF (GC(E ′(vi, cj))) = k (5.1)

First, we prove the⇒ direction. The condition that ∃M, φMi 6= cj means the intention

of vi is not cj inM. According to definition 14, we know that for all bu ∈ B, if Cu = cj,

thenM(bu) 6= vi. As a result,M is a ballot assignment of E ′(vi, cj) as well. According

to Theorem 10, there is a corresponding maximum flow solution of GC(E ′(vi, cj)) in

E ′(vi, cj). Furthermore, the size of the maximum flow is |B| according to Theorem 9,

which completes the proof.

Then, we prove the ⇐ direction. The condition that MF (GC(E ′(vi, cj))) = k means

there is a maximum flow of size k in the graph GC(E ′(vi, cj)). According to Theorem

10, there is a corresponding ballot assignment M for the e-voting system E ′(vi, cj).

It is clear that M is also a ballot assignment of E because E ′(vi, cj) is pruned from

E . Moreover, φMi 6= cj because vi is deleted from the mixins of all the ballots whose

candidates are cj, which completes the proof.

Theorem 12. Algorithm 10 solves problem 1.

Proof. At first, Algorithm 10 computes the maximum flow δ of E . Note that δ equals

to k for sure. Secondly, Algorithm 10 enumerates voter vi and candidate cj on line 2

and 3. Thirdly, E ′(vi, cj) is computed from line 4 to 9 and the maximum flow δ′ of

E ′(vi, cj) is computed on line 10. If δ′ does not equal to δ, then Algorithm 10 asserts

that the anonymity is compromised on line 12. The correctness of the assertion is

justified as follows. The condition that δ 6= δ′ can be expressed as:

∃vi, cj,MF (GC(E ′(vi, cj))) 6= k (5.2)

From equation 5.1 we can get:

∃vi, cj, (∃M, φMi 6= cj)⇒MF (GC(E ′(vi, cj))) = k (5.3)

133

Chapter 5. Dynamic Ring Signature

We can get formula as follows when applying syllogism on equation 5.2 and 5.3:

∃vi, cj,∀M, φMi = cj (5.4)

According to definition 15, equation 5.4 indicates that the anonymity is compromised;

in particular, the intention of vi is cj in all ballot assignments of E .

Finally, when Algorithm 10 proceeds to line 16, it means:

∀vi, cj,MF (GC(E ′)) = k (5.5)

We apply syllogism on equation 5.1 and 5.5 and can get:

∀vi, cj,∃M, φMi 6= cj (5.6)

Equation 5.6 indicates the preservation of anonymity, which completes the proof.

5.2.4 Mixin Selection

The anonymity in an e-voting system can be compromised because the mixins of the

ballots are not appropriately selected. In this section, we define the mixin selection

problem and present dynamic ring signature to solve it.

Definition 16. Given an e-voting system E = {V , C,B}, an raw ballot b̄ = (V̄ , C̄)

consists of a voter V̄ and a candidate C̄, in which V̄ ∈ V and C̄ ∈ C.

A raw ballot is a ballot whose mixins are not yet determined. The problem of mixin se-

lection concerns how to determine the mixins of a raw ballot to prevent the anonymity

of a given e-voting system from being compromised.

Problem 2. Mixin selection: given an e-voting system E = {V , C,B} and a raw

ballot b̄ = (V̄ , C̄), determine the mixins V ′ ∪ {V̄ } of b̄ so that the anonymity of the

new e-voting system, i.e., E ′ = {V , C,B ∪ {(V ′ ∪ {V̄ }, C̄)}}, is not compromised, or

there are no such mixins.

134

5.2. Provable Anonymity via Dynamic Ring Signature

The problem of mixin selection is easy to solve as follows: if V can preserve the

anonymity in the new e-voting system, then output V ; otherwise, assert that there is

no answer. Such an naive algorithm is based on the intuition that more mixins can

enhance the anonymity more significantly, which is formally stated as Theorem 13

and Corollary1.

Theorem 13. If V ⊂ V is an answer to the problem of mixin selection, then V ∪{vi}

is also an answer where vi ∈ V is an arbitrary voter.

Proof. Notate the e-voting system {V , C,B ∪ {(V, C̄)}} as E1. Notate the e-voting

system {V , C,B ∪ {(V ∪ {vi}, C̄)}} as E2. Because V is an answer to the problem of

mixin selection, the anonymity of E1 is preserved. As a result, the function call of

MFAV(E1) returns ⊥.

For an arbitrary pair of voter and candidate, notate the maximum flows calculated

on line 10 in MFAV(E1) and MFAV(E2) as δ′1 and δ′2 respectively. Because V is a

subset of V ∪ {vi}, the edges of GC(E1) is a subset of the edges of GC(E2) according

to Algorithm 9. Therefore, δ′1 < δ′2. Because the function call of MFAV(E1) returns

⊥, the condition of anonymity compromise on line 11, i.e., δ > δ′1 will always be false.

Consequently, δ > δ′2 will always be false as well. We can assert that MFAV(E2) will

return ⊥ and the anonymity of E2 is preserved, which completes the proof.

Corollary 1. If V is not an answer to the problem of mixin selection, then there is

no answer.

Proof. Assume for contradiction that there is an answer V to the problem of mixin

selection given that V is not an answer. We know V must be a subset of V because

V is the universe. According to Theorem 13, V is also an answer to the problem of

mixin selection, which leads to a contradiction. As a result, the assumption does not

hold, which completes the proof.

135

Chapter 5. Dynamic Ring Signature

Although the problem of mixin selection can be solved by simply checking whether V

is an answer, however, it is not wise to select V as the mixins if it is an answer. This

is because it is time-consuming to use such a large amount of mixins to generate the

ring signature and for future signature verification. As a result, we aim to find an

answer of size as minimum as possible. Such a problem is formally stated as follows.

Problem 3. Minxin selection revisited (MSR): given an e-voting system E =

{V , C,B} and a raw ballot b̄ = (V̄ , C̄), determine the mixins V ′ ∪ {V̄ } of b̄ of min-

imum size so that the anonymity of the new e-voting system, i.e., E ′ = {V , C,B ∪

{(V ′ ∪ {V̄ }, C̄)}}, is not compromised, or there are no such mixins.

The problem MSR is not easy to solve because the number of possible mixin sets is

up to 2n−1. That is, it takes exponential time if brute force algorithm is employed.

In this chapter, we propose HeruMS as shown in Algorithm 11, a heuristic algorithm

with polynomial time complexity for the problem MSR.

Algorithm 11 is based on the intuition to include those voters that frequently appear

in ballots of different candidates. In particular, we first calculate the appearance

time of each voter from line 6 to 14, which serves as the heuristic value. Then, the

voters are enumerated according to their heuristic values in descending order from

line 16 to 23. Inside the enumeration, we try to add a voter into the mixin set and

invoke Algorithm 10 to verify whether current mixins can preserve anonymity. If so,

an answer to the problem MSR is found. If all the voters are added into mixin set

while the anonymity is still compromised, we can assert that there are no such mixins

according to Corollary1.

Theorem 14. Algorithm 11 solves problem 2.

Proof. In Algorithm 11, V ∪ {V̄ } equals V if it proceeds to line 23. According to

Corollary1, there is no answer if V is not an answer to problem 2, which completes

the proof.

136

5.2. Provable Anonymity via Dynamic Ring Signature

Algorithm 11 HeurMS: mixin selection

Input: E : an e-voting system; b̄: a raw ballot

Output: V : mixins for b̄ to preserve anonymity, or ⊥ if there are no such mixins

1: V ← ∅

2: W ← a function from voters V to integers Z

3: for i← 1 to n do

4: W(vi) ← 0

5: end for

6: for i← 1 to k do

7: for j ← 1 to li do

8: if Ci = C̄ then

9: W(vji) ← W(vji)− 1

10: else

11: W(vji) ← W(vji) + 1

12: end if

13: end for

14: end for

15: Sort V according to W(V) in descending order

16: for i← 1 to n do

17: if vi 6= V̄ then

18: V ← V ∪ {vi}

19: if MFAV({V , C,B ∪ {(V ∪ {V̄ }, C̄)}}) = ⊥ then

20: return V ∪ {V̄ }

21: end if

22: end if

23: end for

24: return ⊥

137

Chapter 5. Dynamic Ring Signature

5.3 Analysis & Experiments

In this section, we first analyze the time complexity of Algorithm 10 and Algorithm

11 in subsection 5.3.1. Then, we demonstrate the severe de-anonymization issue of

the traditional approach by showing the number of compromised voters with different

numbers of random mixins in subsection 5.3.2. Furthermore, the average number of

mixins and time consumption of Algorithm 11 with different numbers of ballots and

candidates are evaluated in subsection 5.3.3 and 5.3.4 respectively. Finally, subsection

5.3.5 validates the correctness of Algorithm 11 in the setting that multiple ballots

are submitted concurrently. To summarize, the traditional approach that selects

mixins randomly suffers from the de-anonymization issue severely, while dynamic ring

signature can address such an issue with a small number of mixins in a time-efficient

way, even when the multiple ballots are submitted concurrently.

5.3.1 Time Complexity Analysis

In this subsection, we analyze the time complexity of Algorithm 10 and 11, and show

that both of them are polynomial to the number of voters, ballots, and candidates.

Theorem 15. Algorithm 10 and Algorithm 11 takes O(nmk(n + k +
∑k

i=1 li)) and

O(n2mk(n+ k +
∑k

i=1 li)) respectively.

Proof. First, for a given e-voting system, there are n + k + 2 vertices and n + k +∑k
i=1 li edges in the constructed graph G using Algorithm 9. Then, Algorithm 10

enumerates each voter and each candidate and invokes a maximum flow algorithm

on the corresponding constructed graph. We employ Ford-Fulkerson algorithm [34],

whose complexity is O(E ·f) in a graph with E edges and maximum flow size of f , as

the maximum flow algorithm. Because the maximum size of the maximum flow for

the constructed graphs is k, each invocation of maximum flow algorithm takes time

O((n+ k +
∑k

i=1 li) · k). Inside the enumeration, Algorithm 10 also enumerates each

138

5.3. Analysis & Experiments

ballots, which takes time O(k). To summarize, Algorithm 10 takes O(nmk(n + k +∑k
i=1 li)) time, which completes the proof.

Algorithm 11 enumerates each voter and invokes Algorithm 10. Therefore, the time

complexity of Algorithm 11 is O(n2mk(n+ k+
∑k

i=1 li)), which completes the proof.

We further simplify the time complexity expressions as follows. The number of ballots

is no more than the number of voters, i.e, k = O(n). As a result, Algorithm 10 takes

O(nmk(n +
∑k

i=1 li)) time. Later on, we will show that the number of mixins for

each ballot is small, i.e., li = O(1). Therefore, Algorithm 10 takes O(n2mk) time

optimistically. Similarly, Algorithm 11 takes O(n3mk) time optimistically.

Corollary 2. If the number of mixins for each ballot is considered as a constant,

i.e., li = O(1) for all li, then, Algorithm 10 and Algorithm 11 takes O(n2mk) and

O(n2mk), respectively.

5.3.2 Number of Compromised Voters v.s. Number of Mix-

ins for Traditional Approaches

In this subsection, we conduct experiments to examine to which degree the anonymity

is compromised by the traditional linkable ring signature. We fix the number of voters

to be 100 and evaluate how the number of voters, ballots, and candidates affects the

number of compromised voters. For each parameter setting, we generate ballots with

random choices of candidates and mixins and count the number of compromised

voters according to Algorithm 10. Such experiments are repeated for 100 times, and

the average value is displayed.

In Figure 5.4, we fix the number of voters and candidates to be 100 and 2, respectively,

vary the number of mixins from 2 to 17 with a step of 1, and vary the number of

ballots from 60 to 100 with a step of 10. The anonymity of up to 94.39% of the voters

139

Chapter 5. Dynamic Ring Signature

100 Ballots
90 Ballots
80 Ballots
70 Ballots
60 Ballots

12 14 164 6 8 102

100

80

0

20

40

60

Number of Mixins

N
u

m
b

er
 o

f
C

o
m

p
ro

m
is

ed
 V

o
te

rs
1.2

1.0

0

0.2

0.4

0.6

0.8

14 15 16 1713

Figure 5.4: Number of compromised voters v.s. number of ballots and mixins

is compromised when the number of ballots and mixins are 100 and 2, respectively.

Indeed, the number of compromised users decreases significantly when the number

of mixins increases from 2 to 17. Moreover, a smaller number of ballots indicates a

smaller number of compromised voters. However, there are still some compromised

voters even there are as many as 17 mixins. That is, 17 mixins are not enough to

guarantee anonymity, and we can hardly tell whether it can guarantee anonymity for

sure with more mixins. Note that it requires more computational power to generate

and verify a signature with more mixins. As a comparison, the average number of

mixins in Monero transactions is 3, 5, and 11 since September 2016, September 2017,

and now respectively [118]. Therefore, it is of high demand for a provably correct

anonymity validation algorithm and an intelligent mixin selection algorithm.

In Figure 5.5, we fix the number of voters and ballots to be 100 and 80, respectively,

vary the number of mixins from 2 to 17, and vary the number of candidates from 2 to

6. As we can see, the number of compromised users does not change too much when

the number of candidates increases from 3 to 6. Hence, the influence of the number of

140

5.3. Analysis & Experiments

2 Candidates
3 Candidates
4 Candidates
5 Candidates
6 Candidates

100

80

0

20

40

60

N
u

m
b

er
 o

f
C

o
m

p
ro

m
is

ed
 V

o
te

rs

12 14 164 6 8 102
Number of Mixins

0.8

0.6

0

0.1

0.2

0.3

0.4

14 15 16 1713

0.5

0.7

Figure 5.5: Number of compromised voters v.s. number of candidates and mixins

candidates to the number of compromised voters is limited. Last but not least, there

are still some compromised voters even there are up to 17 mixins and 6 candidates.

5.3.3 Number of Mixins for Dynamic Ring Signature

In this subsection, we conduct experiments to evaluate the number of mixins gener-

ated by dynamic ring signature. On the one hand, we demonstrate how the number of

candidates and ballots influences the number of required mixins. For each parameter

setting, we generate ballots with randoms choice of candidates, and generate the mix-

ins according to Algorithm 11. Such an experiment is repeated for 100 times, and the

average value is displayed. One the other hand, with a fixed number of 2 candidates

and 80 ballots, we run the experiment for 200 times and show the histogram of the

number of mixins.

Figure 5.6 shows how the average number of mixins in dynamic ring signature varies

for different numbers of candidates and ballots. We can see that when the number

141

Chapter 5. Dynamic Ring Signature

Number of Ballots
60 70 80 90 100

Number of Candidates
2 3 4 5 6

A
v

er
a

g
e

N
u

m
b

er
 o

f
M

ix
in

s
p

er
 B

a
ll

o
t

1

3

2

4

5

0

A
v

era
g

e N
u

m
b

er o
f M

ix
in

s p
er B

a
llo

t

1

3

2

4

5

0

Figure 5.6: Number of mixins per ballot v.s. number of ballots and candidates

Number of Mixins

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

D
en

si
ty

Figure 5.7: Histogram of number of mixin

142

5.3. Analysis & Experiments

of ballots is 80, the number of generated mixins remains nearly unchanged and is

around 3 as the number of candidate increase. We can conclude that dynamic ring

signature is superior to the traditional approach by reducing the number of mixins

from 15 to 3. As the number of ballots increases from 60 to 100 and we fix the

number of candidates to be 2, we can see that the number of required mixins slightly

increases from 2 to 4 approximately. We can draw the conclusion that the number

of required mixins for dynamic ring signature is stable regardless of the number of

ballots. Figure 5.7 shows the histogram of the number of required mixins when the

number of candidates is 2, and the number of ballots is 80. The figure shows that the

number of mixins is less than 4 for almost all the time, which indicates the stability

of dynamic ring signature.

5.3.4 Time Consumption for Dynamic Ring Signature

In this subsection, we conduct experiments to evaluate the time efficiency of dynamic

ring signature. On one hand, we demonstrate how the time consumption is influenced

by the number of candidates and ballots. For each parameter setting, we generate

ballots with random choices of candidates, and generate the mixins according to

Algorithm 11. Such an experiment is repeated for 100 times, and the average value is

displayed. One the other hand, with a fixed number of 2 candidates and 80 ballots, we

run the experiment for 200 times and show the histogram of the time consumption.

Figure 5.8 shows how the time consumption for each ballot with different numbers

of candidates and ballots. When the number of ballots is 80, the average time to

generate each ballot remains nearly unchanged and is less than 5 milliseconds as the

number of candidate increase. We conclude that dynamic ring signature is time-

efficient regardless of the number of candidates. As the number of ballots increases

from 60 to 100, we can see that the average time consumption of each ballot increases

from 1 to 24 milliseconds approximately. Such a phenomenon is regular because the

143

Chapter 5. Dynamic Ring Signature

Number of Ballots
60 70 80 90 100

Number of Candidates
2 3 4 5 6

A
v

er
a

g
e

T
im

e
C

o
n

su
m

p
ti

o
n

 p
er

 B
a

ll
o

t
(m

s)

10

30

25

40

45

0

A
v

era
g

e T
im

e C
o

n
su

m
p

tio
n

 p
er B

a
llo

t (m
s)

35

20

15

5

10

30

25

40

45

0

35

20

15

5

Figure 5.8: Time consumption per ballot v.s. number of ballots and candidates

Elapsed Time (ms)

D
en

si
ty

100 2 4 6 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

Figure 5.9: Histogram of time consumption

144

5.3. Analysis & Experiments

constructed graph is more complicated when there are more ballots. Figure 5.9 shows

the histogram of the time consumption when the number of candidates is 2, and the

number of ballots is 80. The figure shows that the time consumption for each ballot

is less than 10 milliseconds for all the cases, which indicates the stability in terms of

time efficiency of dynamic ring signature.

5.3.5 Concurrent Ballot Submission

Number of Concurrent Ballots
1 3 5 7 9

1

2

3

4

5

0

A
v

er
a

g
e

N
u

m
b

er
 o

f
M

ix
in

s
p

er
 B

a
ll

o
t

A
v

era
g

e T
im

e C
o

n
su

m
p

tio
n

 p
er B

a
llo

t (m
s)

2

4

6

8

10

0

Number of Concurrent Ballots
1 3 5 7 9

Figure 5.10: Average number of mixins and time consumption per ballot v.s. number

of concurrent ballots

Algorithm 11 processes a single raw ballot for a given e-voting system. Furthermore,

the e-voting system will be renewed after processing and including the raw ballot.

Therefore, it seems Algorithm 11 can only process ballots sequentially. Indeed, the

provable anonymity is provided only when the ballots come in sequence. Naturally, it

comes to the question of whether Algorithm 11 can process concurrent ballot submis-

145

Chapter 5. Dynamic Ring Signature

sions. Figure 5.10 shows the experimental results when there are 1 to 9 concurrent

ballots with a step of 2 ballots. As we can see, the number of required mixins and

the time consumption remains nearly unchanged with different numbers of concur-

rent ballots, which indicates that dynamic ring signature works well even if multiple

ballots are submitted simultaneously.

5.4 Related Work

5.4.1 E-voting systems

E-voting systems have been studied for decades and have been employed in many

countries for national, statewide and municipal elections. Before the rising of blockchain

technology, the research community has been devoted to providing verifiability. That

is, to guarantee that ballots from the voters have been counted indeed [37]. Some

recent works include [36], [91], [60], and [90]. In these systems, The definitions of

verifiability differ in many aspects, such as the classes of protocols they capture and

the underlying models and assumptions. However, verifiability seems to be a con-

tradiction to anonymization for these approaches [38]. That is, these systems fail to

anonymize voters.

Blockchain, a technology for trustless data storage, shows great potential in e-voting

because the data on blockchain is auditable in nature [87][54][13]. Here, auditability

shares the same meaning as verifiability in traditional e-voting systems. The first

application of blockchain technology is Bitcoin, which brings out Bitcoin-based e-

voting systems [187][18][178]. Because users are pseudo-anonymous in Bitcoin, these

works cannot provide anonymity. Later on, the researchers try to develop BEV based

on general blockchain platforms such as Ethereum [116][156] and Hyperledger Fabric

[179][92]. Meanwhile, cryptographic techniques such as zero-knowledge proof [142],

blind signature [26], secrete sharing [156], and linkable ring signature [123][38] are

146

5.5. Chapter Summary

employed for anonymity. However, existing BEV systems incur various issues. In

BEV with zero-knowledge proof [116], the signatures are computationally heavy to

verify. In BEV using blind signature [62] or secrete sharing [156], the identities of

the voters can be arbitrarily faked. In BEV with linkable ring signature [179][101],

the identities of some voters can be compromised from a set of submitted ballots. To

summarize, existing BEV systems fail to consider auditability and anonymity at the

same time.

5.4.2 Linkable Ring Signature

Linkable ring signature was first proposed by Liu et al. in 2004 [110]. There are many

variants in different types of cryptosystems with different features. In this chapter, we

consider public key-based linkable ring signature [123][151][110][109] only. Identity-

based [7] and certificate-based [6] linkable ring signatures are not considered because

they require a private key generator to issue user keys, which contradicts to the

decentralized concept of blockchain.

In particular, public key-based linkable ring signature can be classified into static

and dynamic group linkable ring signature. In static group ring signature, the signer

is supposed to use mixins within a static group of public keys. On the contrary,

dynamic group linkable ring signature, or one-time linkable ring signature [122], can

use arbitrary mixins. In either schema, the mixins are randomly selected without

consideration of provable anonymity.

5.5 Chapter Summary

In this chapter, we present Roshan, a blockchain-based e-voting system that provides

auditability, immutability, and anonymity. Inside Roshan, registration information

and ballot information are submitted to blockchain and cannot be tampered. The key

147

Chapter 5. Dynamic Ring Signature

novelty in Roshan lies in dynamic ring signature, an anonymous mechanism to provide

provable anonymity. In particular, dynamic ring signature consists of two parts, a

maximum flow-based algorithm for anonymity validation and a heuristic algorithm for

mixin selection. The experiments indicate that dynamic ring signature uses very few

mixins to provide provable anonymity, demonstrating its superiority over traditional

ring signature approaches. It is notable that dynamic ring signature is not limited to

e-voting and can be used in other applications such as cryptocurrencies.

148

Chapter 6

Conclusion and Future Directions

In this thesis, we identify the issues in big data sharing especially blockchain-based

big data sharing, and address several critical issues. First, we present a compre-

hensive survey of big data sharing in chapter 2, which helps identification of the

challenges and state-of-the-art solutions of big data sharing. Second, in chapter 3, we

propose a fairness-based transaction packing algorithm in the consensus layer, which

can improve the quality of service when providing blockchain-based big data sharing

services. Third, in chapter 5, we propose a dynamic ring signature scheme with prov-

able anonymity for the data sharers and sharees. Finally, in chapter 4, we propose an

efficient multi-keyword search algorithm to preserve the privacy when the data sha-

rees are using the data. We believe the comprehensive survey and high-performance

solutions presented in this thesis may serve as a preliminary step towards the broad

applications of blockchain-based big data sharing and attract extensive attention from

both the academia and industries.

In the future, there are two directions concerning the technical and application levels.

On the one hand, there are still many challenging issues that remain to be addressed

in blockchain-based big data sharing. To name a few, high-performance consensus

algorithms, fine-grained access control mechanisms, methods to prevent unautho-

149

Chapter 6. Conclusion and Future Directions

rized big data re-sharing, etc. are demanded to improve the performance and make

blockchain-based big data sharing more practical. On the other hand, blockchain-

based big data sharing should be deployed in more real-world applications besides

supply chain management and healthcare information management. We believe the

solutions of blockchain-based big data sharing will be significantly improved and have

a wide range of applications in the future.

150

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno,

Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi.

Searchable encryption revisited: Consistency properties, relation to anonymous

ibe, and extensions. In Annual international cryptology conference, pages 205–

222. Springer, 2005.

[2] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison.

Scalable bloom filters. Information Processing Letters, 101(6):255–261, 2007.

[3] Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak. Foundations

of data exchange. Cambridge University Press, 2014.

[4] Judie Attard, Fabrizio Orlandi, Simon Scerri, and Sören Auer. A systematic

review of open government data initiatives. Government Information Quarterly,

32(4):399–418, 2015.

[5] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on

ethereum smart contracts (sok). In Springer POST, pages 164–186, 2017.

[6] Man Ho Au, Joseph K Liu, Willy Susilo, and Tsz Hon Yuen. Certificate based

(linkable) ring signature. In International Conference on Information Security

Practice and Experience, pages 79–92. Springer, 2007.

151

References

[7] Man Ho Au, Joseph K Liu, Willy Susilo, and Tsz Hon Yuen. Secure id-based

linkable and revocable-iff-linked ring signature with constant-size construction.

Theoretical Computer Science, 469:1–14, 2013.

[8] David E Bakken, R Rarameswaran, Douglas M Blough, Andy A Franz, and

Ty J Palmer. Data obfuscation: Anonymity and desensitization of usable data

sets. IEEE Security & Privacy, 2(6):34–41, 2004.

[9] Carlo Batini, Monica Scannapieco, et al. Data and information quality. Cham,

Switzerland: Springer International Publishing. Google Scholar, page 43, 2016.

[10] Paul C Bauer, Florian Keusch, and Frauke Kreuter. Trust and cooperative

behavior: Evidence from the realm of data-sharing. PloS one, 14(8):e0220115,

2019.

[11] Elizabeth A Bell, Lucila Ohno-Machado, and M Adela Grando. Sharing my

health data: a survey of data sharing preferences of healthy individuals. In

AMIA Annual Symposium Proceedings, volume 2014, page 1699. American Med-

ical Informatics Association, 2014.

[12] Susan Bell, Josh Benaloh, Michael D Byrne, Dana DeBeauvoir, Bryce Eakin,

Philip Kortum, Neal McBurnett, Olivier Pereira, Philip B Stark, Dan S Wal-

lach, et al. Star-vote: A secure, transparent, auditable, and reliable voting

system. In 2013 Electronic Voting Technology Workshop/Workshop on Trust-

worthy Elections (EVT/WOTE 13), 2013.

[13] Emanuele Bellini, Paolo Ceravolo, and Ernesto Damiani. Blockchain-based e-

vote-as-a-service. In 2019 IEEE 12th International Conference on Cloud Com-

puting (CLOUD), pages 484–486. IEEE, 2019.

[14] J Benet and N Greco. Filecoin: A decentralized storage network. Protoc. Labs,

pages 1–36, 2018.

152

References

[15] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint

arXiv:1407.3561, 2014.

[16] Elisa Bertino and Elena Ferrari. Big data security and privacy. In A Compre-

hensive Guide Through the Italian Database Research Over the Last 25 Years,

pages 425–439. Springer, 2018.

[17] Elisa Bertino and Ravi Sandhu. Database security-concepts, approaches, and

challenges. IEEE Transactions on Dependable and secure computing, 2(1):2–19,

2005.

[18] Stefano Bistarelli, Marco Mantilacci, Paolo Santancini, and Francesco Santini.

An end-to-end voting-system based on bitcoin. In Proceedings of the Symposium

on Applied Computing, pages 1836–1841, 2017.

[19] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.

In Annual international cryptology conference, pages 213–229. Springer, 2001.

[20] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions

and challenges. In Theory of Cryptography Conference, pages 253–273. Springer,

2011.

[21] Raphael Bost.
∑

oϕoς: Forward secure searchable encryption. In ACM CCS,

pages 1143–1154, 2016.

[22] Yingyi Bu, Adawaichee Fu, Raymond Chi Wing Wong, Lei Chen, and Jiuyong

Li. Privacy preserving serial data publishing by role composition. Proceedings

of the VLDB Endowment, 1(1):845, 2008.

[23] Chengjun Cai, Jian Weng, Xingliang Yuan, and Cong Wang. Enabling reli-

able keyword search in encrypted decentralized storage with fairness. IEEE

Transactions on Dependable and Secure Computing (TDSC), 2018.

153

References

[24] K Selçuk Candan, Huan Liu, and Reshma Suvarna. Resource description frame-

work: metadata and its applications. ACM SIGKDD Explorations Newsletter,

3(1):6–19, 2001.

[25] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving

multi-keyword ranked search over encrypted cloud data. IEEE Transactions on

parallel and distributed systems, 25(1):222–233, 2013.

[26] David Chaum. Blind signatures for untraceable payments. In Advances in

cryptology, pages 199–203. Springer, 1983.

[27] Jinchuan Chen and Yunzhi Xue. Bootstrapping a blockchain based ecosystem

for big data exchange. In 2017 IEEE international congress on big data (bigdata

congress), pages 460–463. IEEE, 2017.

[28] Lanxiang Chen, Wai-Kong Lee, Chin-Chen Chang, Kim-Kwang Raymond

Choo, and Nan Zhang. Blockchain based searchable encryption for electronic

health record sharing. Future Generation Computer Systems (FGCS), 2019.

[29] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile networks

and applications, 19(2):171–209, 2014.

[30] Min Chen, Yongfeng Qian, Jing Chen, Kai Hwang, Shiwen Mao, and Long

Hu. Privacy protection and intrusion avoidance for cloudlet-based medical data

sharing. IEEE transactions on Cloud computing, 2016.

[31] Shimin Chen, Phillip B Gibbons, Suman Nath, et al. Rethinking database

algorithms for phase change memory. In Cidr, volume 11, page 5th, 2011.

[32] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private in-

formation retrieval. In Proceedings of IEEE 36th Annual Foundations of Com-

puter Science, pages 41–50. IEEE, 1995.

154

References

[33] Francis S Collins and Harold Varmus. A new initiative on precision medicine.

New England Journal of Medicine, 372(9):793–795, 2015.

[34] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2009.

[35] Véronique Cortier, Constantin Cătălin Drăgan, François Dupressoir, Benedikt

Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. Machine-checked proofs of

privacy for electronic voting protocols. In 2017 IEEE Symposium on Security

and Privacy (SP), pages 993–1008. IEEE, 2017.

[36] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene.

Election verifiability for helios under weaker trust assumptions. In European

Symposium on Research in Computer Security, pages 327–344. Springer, 2014.

[37] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Mueller, and Tomasz

Truderung. Sok: Verifiability notions for e-voting protocols. In 2016 IEEE

Symposium on Security and Privacy (SP), pages 779–798. IEEE, 2016.

[38] Véronique Cortier and Joseph Lallemand. Voting: You can’t have privacy with-

out individual verifiability. In Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, pages 53–66, 2018.

[39] Chris Culnane, Peter YA Ryan, Steve Schneider, and Vanessa Teague. vvote:

a verifiable voting system. ACM Transactions on Information and System Se-

curity (TISSEC), 18(1):1–30, 2015.

[40] Chris Culnane and Steve Schneider. A peered bulletin board for robust use in

verifiable voting systems. In 2014 IEEE 27th Computer Security Foundations

Symposium, pages 169–183. IEEE, 2014.

[41] Philip M Davis, Bruce V Lewenstein, Daniel H Simon, James G Booth, and

Mathew JL Connolly. Open access publishing, article downloads, and citations:

randomised controlled trial. BMj, 337, 2008.

155

References

[42] Wenliang Du and Zhijun Zhan. Building decision tree classifier on private data.

In Proceedings of the IEEE international conference on Privacy, security and

data mining, pages 1–8, 2002.

[43] Cynthia Dwork. Differential privacy. In International Colloquium on Automata,

Languages, and Programming, 2006.

[44] Cynthia Dwork. Differential privacy: A survey of results. In International

conference on theory and applications of models of computation, pages 1–19.

Springer, 2008.

[45] Cynthia Dwork. The differential privacy frontier. In Theory of Cryptography

Conference, pages 496–502. Springer, 2009.

[46] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In

Proceedings of the forty-first annual ACM symposium on Theory of computing,

pages 371–380, 2009.

[47] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and Salil Vad-

han. On the complexity of differentially private data release: efficient algorithms

and hardness results. In Proceedings of the forty-first annual ACM symposium

on Theory of computing, pages 381–390, 2009.

[48] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.

Bitcoin-ng: A scalable blockchain protocol. In USENIX NSDI, 2016.

[49] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is

vulnerable. Commun. ACM, 2018.

[50] Ruogu Fang, Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, and SS Iyen-

gar. Computational health informatics in the big data age: a survey. ACM

Computing Surveys (CSUR), 49(1):1–36, 2016.

156

References

[51] Adam R Ferguson, Jessica L Nielson, Melissa H Cragin, Anita E Bandrowski,

and Maryann E Martone. Big data from small data: data-sharing in the’long

tail’of neuroscience. Nature neuroscience, 17(11):1442–1447, 2014.

[52] Benjamin CM Fung, Ke Wang, and S Yu Philip. Anonymizing classification data

for privacy preservation. IEEE transactions on knowledge and data engineering,

19(5):711–725, 2007.

[53] John Gantz and David Reinsel. Extracting value from chaos. IDC iview,

1142(2011):1–12, 2011.

[54] Kanika Garg, Pavi Saraswat, Sachin Bisht, Sahil Kr Aggarwal, Sai Krishna

Kothuri, and Sahil Gupta. A comparitive analysis on e-voting system using

blockchain. In 2019 4th International Conference on Internet of Things: Smart

Innovation and Usages (IoT-SIU), pages 1–4. IEEE, 2019.

[55] Mouzhi Ge, Hind Bangui, and Barbora Buhnova. Big data for internet of things:

A survey. Future generation computer systems, 87:601–614, 2018.

[56] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme, vol-

ume 20. Stanford university Stanford, 2009.

[57] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. Algorand: Scaling byzantine agreements for cryptocurrencies. In Pro-

ceedings of the 26th Symposium on Operating Systems Principles. ACM, 2017.

[58] Jeremy Ginsberg, Matthew H Mohebbi, Rajan S Patel, Lynnette Brammer,

Mark S Smolinski, and Larry Brilliant. Detecting influenza epidemics using

search engine query data. Nature, 457(7232):1012–1014, 2009.

[59] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

157

References

[60] Gurchetan S Grewal, Mark D Ryan, Liqun Chen, and Michael R Clarkson. Du-

vote: Remote electronic voting with untrusted computers. In 2015 IEEE 28th

Computer Security Foundations Symposium, pages 155–169. IEEE, 2015.

[61] Önder Gürcan, Antonella Del Pozzo, and Sara Tucci-Piergiovanni. On the

bitcoin limitations to deliver fairness to users. In Springer OTM, 2017.

[62] Freya Sheer Hardwick, Apostolos Gioulis, Raja Naeem Akram, and Konstanti-

nos Markantonakis. E-voting with blockchain: An e-voting protocol with de-

centralisation and voter privacy. In 2018 IEEE International Conference on

Blockchain, pages 1561–1567. IEEE, 2018.

[63] Brian Hayes. Cloud computing. Communications of the ACM, 51(7):9–11, 2008.

[64] Kun He, Jing Chen, Ruiying Du, Qianhong Wu, Guoliang Xue, and Xiang

Zhang. Deypos: Deduplicatable dynamic proof of storage for multi-user envi-

ronments. IEEE Transactions on Computers, 65(12):3631–3645, 2016.

[65] Jan-Hinnerk Helms. Previewing audio data, February 12 2009. US Patent App.

11/834,680.

[66] Maurice Herlihy. Blockchains from a distributed computing perspective. Com-

mun. ACM, 2019.

[67] Bobby Lee Houtkoop, Chris Chambers, Malcolm Macleod, Dorothy VM Bishop,

Thomas E Nichols, and Eric-Jan Wagenmakers. Data sharing in psychology:

A survey on barriers and preconditions. Advances in methods and practices in

psychological science, 1(1):70–85, 2018.

[68] Haibo Hu, Jianliang Xu, Chushi Ren, and Byron Choi. Processing private

queries over untrusted data cloud through privacy homomorphism. In 2011

IEEE 27th International Conference on Data Engineering, pages 601–612.

IEEE, 2011.

158

References

[69] Haibo Hu, Jianliang Xu, Xizhong Xu, Kexin Pei, Byron Choi, and Shuigeng

Zhou. Private search on key-value stores with hierarchical indexes. In 2014

IEEE 30th International Conference on Data Engineering, pages 628–639.

IEEE, 2014.

[70] Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, and

Kui Ren. Searching an encrypted cloud meets blockchain: A decentralized,

reliable and fair realization. In IEEE INFOCOM, 2018.

[71] Michael Hucka, Andrew Finney, Herbert M Sauro, Hamid Bolouri, John C

Doyle, Hiroaki Kitano, Adam P Arkin, Benjamin J Bornstein, Dennis Bray,

Athel Cornish-Bowden, et al. The systems biology markup language (sbml): a

medium for representation and exchange of biochemical network models. Bioin-

formatics, 19(4):524–531, 2003.

[72] Lee Hutchinson. Solid-state revolution: in-depth on how ssds really work. Ars

Technica, 2012.

[73] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, 2009.

[74] Raj Jain, Dah-Ming Chiu, and William R Hawe. A quantitative measure of

fairness and discrimination for resource allocation in shared computer system.

Eastern Research Lab, 1984.

[75] Shan Jiang, Jiannong Cao, Yang Liu, Jinlin Chen, and Xuefeng Liu. Program-

ming large-scale multi-robot system with timing constraints. In 2016 25th In-

ternational Conference on Computer Communication and Networks (ICCCN),

pages 1–9. IEEE, 2016.

[76] Shan Jiang, Jiannong Cao, Julie A McCann, Yanni Yang, Yang Liu, Xiaoqing

Wang, and Yuming Deng. Privacy-preserving and efficient multi-keyword search

over encrypted data on blockchain. In 2019 IEEE International Conference on

Blockchain (Blockchain), pages 405–410. IEEE, 2019.

159

References

[77] Shan Jiang, Jiannong Cao, Jia Wang, Milos Stojmenovic, and Julien Bour-

geois. Uniform circle formation by asynchronous robots: A fully-distributed

approach. In 2017 26th International Conference on Computer Communication

and Networks (ICCCN), pages 1–9. IEEE, 2017.

[78] Shan Jiang, Jiannong Cao, Hanqing Wu, and Yanni Yang. Fairness-based pack-

ing of industrial iot data in permissioned blockchains. IEEE Transactions on

Industrial Informatics, 2020.

[79] Shan Jiang, Jiannong Cao, Hanqing Wu, Yanni Yang, Mingyu Ma, and Jianfei

He. Blochie: a blockchain-based platform for healthcare information exchange.

In 2018 IEEE International Conference on Smart Computing (SMARTCOMP),

pages 49–56. IEEE, 2018.

[80] Shan Jiang, Jiannong Cao, Juncen Zhu, and Yinfeng Cao. Polychain: a

generic blockchain as a service platform. In 2021 International Conference on

Blockchain and Trustworthy Systems (BlockSys), pages 1–14. Springer, 2021.

[81] Shan Jiang, Junbin Liang, Jiannong Cao, and Rui Liu. An ensemble-level

programming model with real-time support for multi-robot systems. In 2016

IEEE International Conference on Pervasive Computing and Communication

Workshops (PerCom Workshops), pages 1–3. IEEE, 2016.

[82] Shan Jiang, Junbin Liang, Jiannong Cao, Jia Wang, Jinlin Chen, and Zhixuan

Liang. Decentralized algorithm for repeating pattern formation by multiple

robots. In 2019 IEEE 25th International Conference on Parallel and Distributed

Systems (ICPADS), pages 594–601. IEEE, 2019.

[83] Taeho Jung, Xiang-Yang Li, Wenchao Huang, Jianwei Qian, Linlin Chen, Junze

Han, Jiahui Hou, and Cheng Su. Accounttrade: Accountable protocols for big

data trading against dishonest consumers. In IEEE INFOCOM 2017-IEEE

Conference on Computer Communications, pages 1–9. IEEE, 2017.

160

References

[84] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption

with worst-case sub-linear complexity. In Springer EUROCRYPT, pages 94–

124, 2017.

[85] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic search-

able symmetric encryption. In Proceedings of the 2012 ACM conference on

Computer and communications security, pages 965–976, 2012.

[86] Vamsee Kasavajhala. Solid state drive vs. hard disk drive price and performance

study. Proc. Dell Tech. White Paper, pages 8–9, 2011.

[87] Kashif Mehboob Khan, Junaid Arshad, and Muhammad Mubashir Khan. Inves-

tigating performance constraints for blockchain based secure e-voting system.

Future Generation Computer Systems, 105:13–26, 2020.

[88] Nawsher Khan, Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Zakira Inayat,

Waleed Kamaleldin Mahmoud Ali, Muhammad Alam, Muhammad Shiraz, and

Abdullah Gani. Big data: survey, technologies, opportunities, and challenges.

The scientific world journal, 2014, 2014.

[89] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual

International Cryptology Conference. Springer, 2017.

[90] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. Demos-2: scalable

e2e verifiable elections without random oracles. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, pages

352–363, 2015.

[91] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-end verifi-

able elections in the standard model. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques, pages 468–498. Springer,

2015.

161

References

[92] Denis Kirillov, Vladimir Korkhov, Vadim Petrunin, Mikhail Makarov, Ildar M

Khamitov, and Victor Dostov. Implementation of an e-voting scheme using

hyperledger fabric permissioned blockchain. In International Conference on

Computational Science and Its Applications, pages 509–521. Springer, 2019.

[93] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email

classification research. In Springer ECML, pages 217–226, 2004.

[94] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-

manthou. Hawk: The blockchain model of cryptography and privacy-preserving

smart contracts. In IEEE Symposium on Security and Privacy, 2016.

[95] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for

message authentication. RFC, 2104:1–11, 1997.

[96] Nir Kshetri and Jeffrey Voas. Blockchain-enabled e-voting. IEEE Software,

35(4):95–99, 2018.

[97] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A trace-

ability analysis of monero’s blockchain. In European Symposium on Research

in Computer Security, pages 153–173. Springer, 2017.

[98] Jiewu Leng, Douxi Yan, Qiang Liu, Kailin Xu, J. Leon Zhao, Rui Shi, Li-

jun Wei, Ding Zhang, and Xin Chen. Manuchain: Combining permissioned

blockchain with a holistic optimization model as bi-level intelligence for smart

manufacturing. IEEE Trans. on Syst. Man Cybern. Syst., 2020.

[99] Meng Li, Donghui Hu, Chhagan Lal, Mauro Conti, and Zijian Zhang.

Blockchain-enabled secure energy trading with verifiable fairness in industrial

internet of things. IEEE Trans. on Ind. Informatics, 2020.

[100] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. Closeness: A new

privacy measure for data publishing. IEEE Transactions on Knowledge and

Data Engineering, 22(7):943–956, 2009.

162

References

[101] Peng Li and Junzuo Lai. Lat-voting: Traceable anonymous e-voting on

blockchain. In International Conference on Network and System Security, pages

234–254. Springer, 2019.

[102] Tiancheng Li, Ninghui Li, Jian Zhang, and Ian Molloy. Slicing: A new approach

for privacy preserving data publishing. IEEE transactions on knowledge and

data engineering, 24(3):561–574, 2010.

[103] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. A survey

on the security of blockchain systems. Future Generation Computer Systems

(FGCS), 2017.

[104] Fan Liang, Wei Yu, Dou An, Qingyu Yang, Xinwen Fu, and Wei Zhao. A survey

on big data market: Pricing, trading and protection. IEEE Access, 6:15132–

15154, 2018.

[105] Dan Lin, Prathima Rao, Elisa Bertino, Ninghui Li, and Jorge Lobo. Exam: a

comprehensive environment for the analysis of access control policies. Interna-

tional Journal of Information Security, 9(4):253–273, 2010.

[106] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso

Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram

Van Ginneken, and Clara I Sánchez. A survey on deep learning in medical image

analysis. Medical image analysis, 42:60–88, 2017.

[107] Jian Liu, Wenting Li, Ghassan O Karame, and N Asokan. Toward fairness of

cryptocurrency payments. IEEE Secur. Priv., 2018.

[108] Jian Liu, Wenting Li, Ghassan O Karame, and N Asokan. Scalable byzantine

consensus via hardware-assisted secret sharing. IEEE Trans. on Computers,

2019.

163

References

[109] Joseph K Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. Linkable ring

signature with unconditional anonymity. IEEE Transactions on Knowledge

and Data Engineering, 26(1):157–165, 2013.

[110] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous

anonymous group signature for ad hoc groups. In Australasian Conference

on Information Security and Privacy, pages 325–335. Springer, 2004.

[111] Joseph K Liu and Duncan S Wong. Linkable ring signatures: Security models

and new schemes. In International Conference on Computational Science and

Its Applications, pages 614–623. Springer, 2005.

[112] Xiulong Liu, Jiuwu Zhang, Shan Jiang, Yanni Yang, Keqiu Li, Jiannong Cao,

and Jiangchuan Liu. Accurate localization of tagged objects using mobile rfid-

augmented robots. IEEE Transactions on Mobile Computing, 2019.

[113] Xueqiao Liu, Guomin Yang, Yi Mu, and Robert Deng. Multi-user verifiable

searchable symmetric encryption for cloud storage. IEEE Transactions on De-

pendable and Secure Computing (TDSC), 2018.

[114] Ruiqu Ma and Patrick TI Lam. Investigating the barriers faced by stakeholders

in open data development: A study on hong kong as a “smart city”. Cities,

92:36–46, 2019.

[115] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakr-

ishnan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM

Transactions on Knowledge Discovery from Data (TKDD), 1(1):3–es, 2007.

[116] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for

boardroom voting with maximum voter privacy. In International Conference

on Financial Cryptography and Data Security, pages 357–375. Springer, 2017.

164

References

[117] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios. Grecs: Graph

encryption for approximate shortest distance queries. In ACM CCS, pages 504–

517, 2015.

[118] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat

Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan,

et al. An empirical analysis of traceability in the monero blockchain. Proceedings

on Privacy Enhancing Technologies, 2018(3):143–163, 2018.

[119] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Bitcoin

White Paper, 2008.

[120] C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In

Proceedings of the 8th ACM conference on Computer and Communications Se-

curity, pages 116–125, 2001.

[121] Qun Ni, Jorge Lobo, Seraphin Calo, Pankaj Rohatgi, and Elisa Bertino. Au-

tomating role-based provisioning by learning from examples. In Proceedings

of the 14th ACM symposium on Access control models and technologies, pages

75–84, 2009.

[122] Shen Noether. Ring signature confidential transactions for monero. IACR

Cryptol. ePrint Arch., 2015:1098, 2015.

[123] Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger,

1:1–18, 2016.

[124] Hyeontaek Oh, Sangdon Park, Gyu Myoung Lee, Jun Kyun Choi, and Sungkee

Noh. Competitive data trading model with privacy valuation for multiple stake-

holders in iot data markets. IEEE Internet of Things Journal, 7(4):3623–3639,

2020.

[125] Alina Oprea, Michael K Reiter, Ke Yang, et al. Space-efficient block storage

integrity. In NDSS, 2005.

165

References

[126] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir

Belfkih. Big data technologies: A survey. Journal of King Saud University-

Computer and Information Sciences, 30(4):431–448, 2018.

[127] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In ACM PODC,

2017.

[128] Agostino Pirovano, ANDREA LEONARDO Lacaita, A Benvenuti, F Pellizzer,

S Hudgens, and R Bez. Scaling analysis of phase-change memory technology.

In IEEE International Electron Devices Meeting 2003, pages 29–6. IEEE, 2003.

[129] Heather A Piwowar, Roger S Day, and Douglas B Fridsma. Sharing detailed

research data is associated with increased citation rate. PloS one, 2(3):e308,

2007.

[130] Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, Mei-Ling Shyu, and SS Iyen-

gar. Multimedia big data analytics: A survey. ACM Computing Surveys

(CSUR), 51(1):1–34, 2018.

[131] Zhiguang Qin, Hu Xiong, Shikun Wu, and Jennifer Batamuliza. A survey of

proxy re-encryption for secure data sharing in cloud computing. IEEE Trans-

actions on Services Computing, 2016.

[132] Junfei Qiu, Qihui Wu, Guoru Ding, Yuhua Xu, and Shuo Feng. A survey of

machine learning for big data processing. EURASIP Journal on Advances in

Signal Processing, 2016(1):67, 2016.

[133] Vinay Rathi, Kristina Dzara, Cary P Gross, Iain Hrynaszkiewicz, Steven Joffe,

Harlan M Krumholz, Kelly M Strait, and Joseph S Ross. Sharing of clinical

trial data among trialists: a cross sectional survey. Bmj, 345, 2012.

[134] Muhammad Habib Ur Rehman, Chee Sun Liew, Assad Abbas, Prem Prakash

Jayaraman, Teh Ying Wah, and Samee U. Khan. Big data reduction methods:

A survey. Data Science and Engineering, 1(4):265–284, 2016.

166

References

[135] Hyun Sook Rhee, Willy Susilo, and Hyun-Jeong Kim. Secure searchable public

key encryption scheme against keyword guessing attacks. IEICE Electronics

Express, 6(5):237–243, 2009.

[136] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In

International Conference on the Theory and Application of Cryptology and In-

formation Security, pages 552–565. Springer, 2001.

[137] Philippe Rocca-Serra, Marco Brandizi, Eamonn Maguire, Nataliya Sklyar, Chris

Taylor, Kimberly Begley, Dawn Field, Stephen Harris, Winston Hide, Oliver

Hofmann, et al. Isa software suite: supporting standards-compliant experimen-

tal annotation and enabling curation at the community level. Bioinformatics,

26(18):2354–2356, 2010.

[138] Ann M Rogerson and Giselle Basanta. Peer-to-peer file sharing and academic

integrity in the internet age. Handbook of academic integrity, pages 273–285,

2016.

[139] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Annual In-

ternational Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 457–473. Springer, 2005.

[140] Yuvraj Sahni, Jiannong Cao, and Shan Jiang. Middleware for multi-robot

systems. In Mission-Oriented Sensor Networks and Systems: Art and Science,

pages 633–673. Springer, 2019.

[141] Daniel Sandler, Kyle Derr, and Dan S Wallach. Votebox: A tamper-evident,

verifiable electronic voting system. In USENIX Security Symposium, volume 4,

page 87, 2008.

[142] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

167

References

payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,

pages 459–474. IEEE, 2014.

[143] Uwe Schwiegelshohn and Ramin Yahyapour. Analysis of first-come-first-serve

parallel job scheduling. In ACM SODA, 1998.

[144] Rashid Sheikh, Durgesh Kumar Mishra, and Beerendra Kumar. Secure mul-

tiparty computation: From millionaires problem to anonymizer. Information

Security Journal: A Global Perspective, 20(1):25–33, 2011.

[145] Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian Per-

rig. Multi-dimensional range query over encrypted data. In 2007 IEEE Sympo-

sium on Security and Privacy (SP’07), pages 350–364. IEEE, 2007.

[146] Ida Sim, Michael Stebbins, Barbara E Bierer, Atul J Butte, Jeffrey Drazen,

Victor Dzau, Adrian F Hernandez, Harlan M Krumholz, Bernard Lo, Bernard

Munos, et al. Time for nih to lead on data sharing. Science, 367(6484):1308–

1309, 2020.

[147] Dilpreet Singh and Chandan K Reddy. A survey on platforms for big data

analytics. Journal of big data, 2(1):8, 2015.

[148] Chris Snijders, Uwe Matzat, and Ulf-Dietrich Reips. ” big data”: big gaps

of knowledge in the field of internet science. International journal of internet

science, 7(1):1–5, 2012.

[149] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques

for searches on encrypted data. In IEEE S&P, pages 44–55, 2000.

[150] Salmin Sultana and Elisa Bertino. A distributed system for the management of

fine-grained provenance. Journal of Database Management (JDM), 26(2):32–47,

2015.

168

References

[151] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. Ringct 2.0:

A compact accumulator-based (linkable ring signature) protocol for blockchain

cryptocurrency monero. In European Symposium on Research in Computer

Security, pages 456–474. Springer, 2017.

[152] Latanya Sweeney. k-anonymity: A model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–

570, 2002.

[153] Core Techniques. Technologies for advancing big data science & engineering

(bigdata). URL: http://www. nsf. gov/funding/pgm summ. jsp, 2012.

[154] Carol Tenopir, Suzie Allard, Kimberly Douglass, Arsev Umur Aydinoglu, Lei

Wu, Eleanor Read, Maribeth Manoff, and Mike Frame. Data sharing by scien-

tists: practices and perceptions. PloS one, 6(6):e21101, 2011.

[155] Manolis Terrovitis, John Liagouris, Nikos Mamoulis, and Spiros Skiadopoulos.

Privacy preservation by disassociation. arXiv preprint arXiv:1207.0135, 2012.

[156] Raylin Tso, Zi-Yuan Liu, and Jen-Ho Hsiao. Distributed e-voting and e-bidding

systems based on smart contract. Electronics, 8(4):422, 2019.

[157] Huseyin Ulusoy, Pietro Colombo, Elena Ferrari, Murat Kantarcioglu, and Er-

man Pattuk. Guardmr: fine-grained security policy enforcement for mapreduce

systems. In Proceedings of the 10th ACM Symposium on Information, Computer

and Communications Security, pages 285–296, 2015.

[158] Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in

vertically partitioned data. In Proceedings of the eighth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 639–644,

2002.

169

References

[159] Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering over

vertically partitioned data. In Proceedings of the ninth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 206–215,

2003.

[160] Willem G Van Panhuis, Proma Paul, Claudia Emerson, John Grefenstette,

Richard Wilder, Abraham J Herbst, David Heymann, and Donald S Burke.

A systematic review of barriers to data sharing in public health. BMC public

health, 14(1):1–9, 2014.

[161] Jia Wang, Jiannong Cao, and Shan Jiang. Fault-tolerant pattern formation

by multiple robots: a learning approach. In 2017 IEEE 36th Symposium on

Reliable Distributed Systems (SRDS), pages 268–269. IEEE, 2017.

[162] Jia Wang, Jiannong Cao, Milos Stojmenovic, Miao Zhao, Jinlin Chen, and

Shan Jiang. Pattern-rl: Multi-robot cooperative pattern formation via deep re-

inforcement learning. In 2019 18th IEEE International Conference On Machine

Learning And Applications (ICMLA), pages 210–215. IEEE, 2019.

[163] Ke Wang, Benjamin CM Fung, and S Yu Philip. Handicapping attacker’s confi-

dence: an alternative to k-anonymization. Knowledge and Information Systems,

11(3):345–368, 2007.

[164] Qian Wang, Kui Ren, Shucheng Yu, and Wenjing Lou. Dependable and secure

sensor data storage with dynamic integrity assurance. ACM Transactions on

Sensor Networks (TOSN), 8(1):1–24, 2011.

[165] Richard Y Wang and Diane M Strong. Beyond accuracy: What data qual-

ity means to data consumers. Journal of management information systems,

12(4):5–33, 1996.

[166] Samuel D Warren and Louis D Brandeis. The right to privacy. Harvard law

review, pages 193–220, 1890.

170

References

[167] Alan F Westin. Privacy and freedom atheneum. New York, 7:431–453, 1967.

[168] Glenn R Wilcock. Performing nearline storage of a file, July 7 2020. US Patent

10,705,764.

[169] Katherine Wolstencroft, Stuart Owen, Olga Krebs, Quyen Nguyen, Natalie J

Stanford, Martin Golebiewski, Andreas Weidemann, Meik Bittkowski, Lihua

An, David Shockley, et al. Seek: a systems biology data and model management

platform. BMC systems biology, 9(1):1–12, 2015.

[170] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Yellow Paper, 2014.

[171] Hanqing Wu, Jiannong Cao, Shan Jiang, Ruosong Yang, Yanni Yang, and Jian-

fei Hey. Tsar: a fully-distributed trustless data sharing platform. In 2018 IEEE

International Conference on Smart Computing (SMARTCOMP), pages 350–

355. IEEE, 2018.

[172] Hanqing Wu, Jiannong Cao, Yanni Yang, Cheung Leong Tung, Shan Jiang,

Bin Tang, Yang Liu, Xiaoqing Wang, and Yuming Deng. Data management in

supply chain using blockchain: Challenges and a case study. In 2019 28th In-

ternational Conference on Computer Communication and Networks (ICCCN),

pages 1–8. IEEE, 2019.

[173] Feng Xia, Wei Wang, Teshome Megersa Bekele, and Huan Liu. Big scholarly

data: A survey. IEEE Transactions on Big Data, 3(1):18–35, 2017.

[174] Xiaokui Xiao and Yufei Tao. Anatomy: Simple and effective privacy preser-

vation. In Proceedings of the 32nd international conference on Very large data

bases, pages 139–150. VLDB Endowment, 2006.

[175] Xiaokui Xiao and Yufei Tao. M-invariance: towards privacy preserving re-

publication of dynamic datasets. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, pages 689–700, 2007.

171

References

[176] Sophia Yakoubov, Vijay Gadepally, Nabil Schear, Emily Shen, and Arkady

Yerukhimovich. A survey of cryptographic approaches to securing big-data

analytics in the cloud. In 2014 IEEE High Performance Extreme Computing

Conference (HPEC), pages 1–6. IEEE, 2014.

[177] Haina Ye, Xinzhou Cheng, Mingqiang Yuan, Lexi Xu, Jie Gao, and Chen Cheng.

A survey of security and privacy in big data. In 2016 16th international sympo-

sium on communications and information technologies (iscit), pages 268–272.

IEEE, 2016.

[178] Haibo Yi. Securing e-voting based on blockchain in p2p network. EURASIP

Journal on Wireless Communications and Networking, 2019(1):1–9, 2019.

[179] Bin Yu, Joseph K Liu, Amin Sakzad, Surya Nepal, Ron Steinfeld, Paul Rimba,

and Man Ho Au. Platform-independent secure blockchain-based voting system.

In International Conference on Information Security, pages 369–386. Springer,

2018.

[180] Jia Yu, Kui Ren, Cong Wang, and Vijay Varadharajan. Enabling cloud stor-

age auditing with key-exposure resistance. IEEE Transactions on Information

forensics and security, 10(6):1167–1179, 2015.

[181] Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and

Wang Fat Lau. New empirical traceability analysis of cryptonote-style

blockchains. In International Conference on Financial Cryptography and Data

Security, pages 133–149. Springer, 2019.

[182] Li Yue, Huang Junqin, Qin Shengzhi, and Wang Ruijin. Big data model of

security sharing based on blockchain. In 2017 3rd International Conference on

Big Data Computing and Communications (BIGCOM), pages 117–121. IEEE,

2017.

172

References

[183] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity

search: the metric space approach, volume 32. Springer Science & Business

Media, 2006.

[184] XJ Zhang and XF Meng. Differential privacy protection for data publishing

and analysis. J Comput, 4:927–949, 2014.

[185] Yinghui Zhang, Robert Deng, Ximeng Liu, and Dong Zheng. Outsourcing ser-

vice fair payment based on blockchain and its applications in cloud computing.

IEEE Trans. on Serv. Comput., 2018.

[186] Yi Zhao, Haiyang Wang, Hui Su, Liang Zhang, Rui Zhang, Dan Wang, and

Ke Xu. Understand love of variety in wireless data market under sponsored

data plans. IEEE Journal on Selected Areas in Communications, 38(4):766–

781, 2020.

[187] Zhichao Zhao and T-H Hubert Chan. How to vote privately using bitcoin. In

International Conference on Information and Communications Security, pages

82–96. Springer, 2015.

[188] Zhenzhe Zheng, Yanqing Peng, Fan Wu, Shaojie Tang, and Guihai Chen. Arete:

On designing joint online pricing and reward sharing mechanisms for mobile

data markets. IEEE Transactions on Mobile Computing, 19(4):769–787, 2019.

173

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background & Motivation
	System Architecture
	Research Framework
	Thesis Organization

	Big Data Sharing: a Comprehensive Survey
	Basics of Big Data Sharing
	Introduction to Big Data
	Definition of Big Data Sharing
	General Procedures of Big Data Sharing
	Benefits of Big Data Sharing
	Requirements of Big Data Sharing Solutions

	Existing Platforms and Categorization
	Existing Platforms
	Categorization of Existing Platforms

	Challenges and Potential Solutions
	Standardization of Heterogeneous Data
	Value Assessment and Pricing Model
	Security
	Privacy
	Data Traceability and Accountability
	High Quality of Service

	Promising Applications
	Big Data Sharing for Healthcare
	Big Data Trading

	Chapter Summary

	Fairness-based Transaction Packing
	System Model and Problem Statement
	Fair-Pack: a Fairness-based Transaction Packing Algorithm
	Sum-Index: a Heuristic Solution to SM-Sum
	Min-Heap-Op: an Optimal Solution to LM-Sum
	Time Complexity Analysis
	Performance Evaluation
	Influence of Transaction Incoming Rate
	Influence of Block Generation Time
	Influence of Block Size
	Influence of Block Validity Ratio

	Related Work
	Chapter Summary

	Multi-keyword Search
	Privacy-preserving and Efficient Data Management via Blockchain
	System Overview
	Database Setup
	Dynamic Update
	Multi-keyword Search

	Experimental Result
	Setup and Update
	Single-keyword Search
	Multi-keyword Search

	Related Work
	Chapter Summary

	Dynamic Ring Signature
	System Architecture
	Provable Anonymity via Dynamic Ring Signature
	Introduction to Ring Signature
	Example & Terminologies
	Anonymity Validation
	Mixin Selection

	Analysis & Experiments
	Time Complexity Analysis
	Number of Compromised Voters v.s. Number of Mixins for Traditional Approaches
	Number of Mixins for Dynamic Ring Signature
	Time Consumption for Dynamic Ring Signature
	Concurrent Ballot Submission

	Related Work
	E-voting systems
	Linkable Ring Signature

	Chapter Summary

	Conclusion and Future Directions
	References

