
The Hong Kong Polytechnic University
Department of Computing

Programming and Coordination
in Distributed Multi-Robot Systems

Shan Jiang

16900499R

Supervisor: Prof. Jiannong Cao

A Confirmation Report submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2017

Abstract

Over the last decades, robotic systems have reached a position of design maturity

and are therefore ready for the mass-production of cheap robots. The current trend

in robotics community is to use a group of robots to accomplish user-defined tasks

instead of using single-robot systems. These group of robots working in collabora-

tion with each other form an ensemble which is commonly referred to as a multi-

robot system (MRS). Use of MRS provides better scalability, reliability, flexibility,

versatility and helps in performing tasks in a faster and cheaper way as compared

to the single-robot systems.

Along with those advantages, there are a lot of challenging issues of manag-

ing MRS in both hardware and software parts. First, the large number of robots

make the system development extremely complicated. It is tough for a robotic sys-

tem developer to develop such complex systems that should be robust, scalable, and

support the real-time integration of various components. Therefore, a programming

model is required to program MRS containing thousands or even millions of robots.

Second, it is hard to coordinate a large number of robots in a distributed or decen-

tralized manner. In traditional MRSs, the base stations are used to coordinate the

robots. However, this kind of centralized infrastructure makes the system hard to

scale up and suffers from single-point failure. These shortages can be overcome by

utilizing distributed MRSs. However, coordinating multiple robots in a distributed

manner is not trivial. Last but not least, Experimental evaluation and validation

are necessary for research in MRS. It often happens that theoretical models and al-

gorithms with perfect simulation results do not work under real-world conditions.

Therefore, it is crucial to building a testbed for MRS to conduct multi-robot re-

search.

In this study, we propose a framework for programming and coordination in dis-

ii

tributed MRSs. Based on the framework, we address the aforementioned challeng-

ing issues one by one. First, we propose a real-time programming model, namely

RMR, to control large-scale multi-robot system. RMR is a logic programming

model, which enables programmers to focus on high-level application requirements

of “what to do” and leave low-level implementations (e.g., data management and

communication) of “how to do” to the runtime system. Second, we develop dis-

tributed algorithms to coordinate the multiple robots correctly and efficiently. In

particular, we propose a uniform circle formation algorithm, which can be used

in the application of area coverage and exploration. Finally, we build a test-bed

of distributed MRS. The test-bed includes eight robots and a localization system.

We further evaluate the proposed programming model and on our MRS. Also, we

develop several impressive demos including “multiple robots pass through narrow

corridor” and “multiple robots form different shapes”.

In the future, we plan the further investigate the distributed coordination prob-

lems in MRSs. To be specific, the context of malicious robots and faulty robots are

of our interest.

iii

List of Publications

1. Shan Jiang, Jiannong Cao, Jia Wang, Milos Stojmenovic, Julien Bourgeois,

“Uniform Circle Formation by Asynchronous Robots: A Fully-Distributed

Approach”, accepted by ICCCN 2017.

2. Yuvraj Sahni, Jiannong Cao, Shan Jiang, “Middleware for Multi-Robot Sys-

tem”, a chapter to appear in “The Philosophy of Mission-Oriented Wireless

Sensor Networks”.

3. Shan Jiang, Jiannong Cao, Yang Liu, Jinlin Chen, Xuefeng Liu, “Program-

ming Large-Scale Multi-Robot System with Timing Constraints”, ICCCN

2016.

4. Shan Jiang, Junbin Liang, Jiannong Cao, Rui Liu, “An ensemble-level pro-

gramming model with real-time support for multi-robot systems”, PerCom

Workshops 2016.

iv

Contents

Abstract ii

Publication iv

List of Figures viii

1 Introduction 1

1.1 Background . 1

1.2 MRS Applications . 2

2 DiMRS - a Distributed Intelligent Multi-Robot System 8

2.1 Introduction . 8

2.2 Existing MRS . 12

3 Programming Large-Scale Multi-Robot System with Timing Con-

straints 18

3.1 Introduction . 18

3.2 Design Principle . 22

3.2.1 Ensemble-level abstraction 22

3.2.2 Combination of forward and backward reasoning 23

3.2.3 Declarative specification of timing constraints 23

3.3 Language Specification . 25

v

3.3.1 Variable, Constant and Boolean Expression 25

3.3.2 Fact . 25

3.3.3 Action . 27

3.3.4 Rule . 29

3.3.5 Time assertion . 30

3.4 Compiler and Runtime System . 30

3.4.1 Compiler . 31

3.4.2 Workflow of the Runtime System 31

3.4.3 Distributed Scheduling . 34

3.4.4 Path Planning . 35

Different Algorithms for the Leader and the Followers . . . 35

Grid Overlay . 36

Grid-Based A* Search Algorithm 36

3.4.5 Collision Avoidance . 37

3.5 Deployment . 38

3.5.1 Simulation . 39

3.5.2 Real-world Experiments 40

Localization System . 40

Intelligent Robots . 40

Programming Environment 42

3.5.3 Example Applications . 43

3.6 Conclusion . 44

4 Uniform Circle Formation by Asynchronous Robots: A Fully-Distributed

Approach 46

4.1 Introduction . 46

4.2 Preliminaries . 50

vi

4.2.1 System Model . 50

4.2.2 Problem Definition . 54

4.3 A Fully-Distributed Approach . 54

4.3.1 Algorithm Framework . 54

4.3.2 Network Construction . 56

4.3.3 Convex Hull Construction 58

4.3.4 Distributed Cardinality Estimation 60

4.3.5 Consensus on Circle . 61

4.3.6 Circle Formation . 64

4.3.7 Uniform Transformation 66

4.4 Experimental Results . 67

4.5 Related Works . 70

4.6 Conclusion . 71

Bibliography 73

vii

List of Figures

1.1 Classification of Robotic Applications 4

2.1 Three kinds of robot for multi-robot system in early age 9

2.2 Two representative multi-robot system in recent years: Swarmbot

for research purpose and Kiva for industry usage 10

2.3 Five representative robots suitable for multi-robot system nowadays 12

3.1 Example application: multiple robots are passing through a narrow

corridor . 21

3.2 Overview of RMR Compilation . 24

3.3 RMR program to move a robot from area s to area t passing through

area middle without action . 26

3.4 RMR program to move a robot from area s to area t passing through

area middle with action . 28

3.5 The function moveto written in the operating system of a robot . . . 28

3.6 The Workflow of the Runtime System 32

3.7 Distributed Scheduling . 33

3.8 Grid Overlay for the Environment 36

3.9 the Field of View of the Robots . 37

3.10 Simulation: multiple robots pass through a corridor 38

3.11 Real Picture of a Robot . 40

viii

3.12 Structure Diagram of a Robot . 41

3.13 Example application: formation control of multiple robots 43

3.14 Execution time of system with the increasing number of robots . . . 44

4.1 several robots are forming uniform circles 49

4.2 An example of initial configuration. It is collision-free and connected. 52

4.3 An illustration of execution of the Sense-Process-Act cycles of three

robots for the models of Fsync, Ssync, and Async. 53

4.4 Analysis on number of message and size of messages 60

4.5 Caclulating the radius of the common circle using the estimation of

the number of robots. 62

4.6 Move to the boundary of the circle 64

4.7 The robots and the beacons . 67

4.8 Structure Diagram of a Robot . 68

ix

x

Chapter 1

Introduction

1.1 Background

Recent advances in robotics and other related fields have made it feasible for de-

velopers to build inexpensive robots. The current trend in robotics community is

to use a group of robots to accomplish task objectives instead of using single robot

systems. These group of robots working in collaboration with each other form an

ensemble which is commonly referred as a multi-robot system (MRS). Use of MRS

provides better scalability, reliability, flexibility, versatility and helps in performing

any task in a faster and cheaper way as compared to single robot system [2]. MRS

system can be very useful in search and surveillance applications especially for ar-

eas which are difficult or impossible for humans to access. Another benefit of MRS

is that it has better spatial distribution [106]. Many applications such as underwater

and space exploration, disaster relief, rescue missions in hazardous environments,

military operations, medical surgeries, agriculture, smart home etc. can make use

of distributed group of robots working in collaboration with each other [2] [56].

It would not only be difficult but may also lead to wastage of resources if such

1

2 1.2. MRS Applications

applications are developed using single robot systems.

The benefits provided by MRS do not come at low cost. MRS is a dynamic

and distributed system where different robots are connected to each other using

wireless connection. Robots in MRS should collaborate with each other to perform

complex tasks such as navigation, planning, distributed computation, etc. But it

is not easy to manage MRS in due to various challenging issues in both hardware

and software parts. First, the large number of robots make the system develop-

ment extremely complicated. It is tough for a robotic system developer to develop

such complex systems that should be robust, scalable, and support the real-time

integration of various components. Therefore, a programming model is required

to program MRS containing thousands or even millions of robots [91]. Second,

it is hard to coordinate a large number of robots in a distributed or decentralized

manner. In traditional MRSs, the base stations are used to coordinate the robots.

However, this kind of centralized infrastructure makes the system hard to scale up

and suffers from single-point failure. These shortages can be overcome by utilizing

distributed MRSs. However, coordinating multiple robots in a distributed manner is

not trivial. Last but not least, Experimental evaluation and validation are necessary

for research in MRS. It often happens that theoretical models and algorithms with

perfect simulation results do not work under real-world conditions. Therefore, it is

crucial to building a testbed for MRS to conduct multi-robot research.

1.2 MRS Applications

Robots contain both sensing and actuator components which makes them useful

for a wide range of applications. Applications which involve navigation, explo-

ration, object transport and manipulation benefit from the use of MRS. Researchers

have been trying to develop biologically inspired robots that incorporate not only

1.2. MRS Applications 3

the structure of insects and animals but also their social characteristics to design

multi-robot system. Researchers try to emulate the communication behavior in

bees, birds, and other insects to design control and coordination system for MRS.

We have classified the robotic applications into seven categories as shown in Fig.

1.1. A brief overview of the robotic application is also provided below. These

applications are generic and not specifically related to MRS. However, the current

research trend is that most applications are now being developed using MRS instead

of single robot system.

• HealthCare Robots: Robots have been used by healthcare and medical pro-

fessionals for a long time. One of the most important uses of robots in health-

care has been for performing and assisting surgeries. Robots are used for

performing precise and minimally invasive surgeries [10] [15]. The current

research trend in this area is to use biologically inspired robots that can move

in confined spaces and manipulate objects in complex environments [15].

Other areas where robots are being used in this application domain is reha-

bilitation and assistive robotics [43] [101]. Robots are used for recovery of

patients with impaired motor and cognitive skills [43]. Robots are being used

for assistance to elderly and other physically or mentally disabled individu-

als to help them live independently. There are even companion robots that

help such individuals with special needs. However, due to lack of awareness

and other reasons, patients and even healthcare professionals are reluctant to

accept robots for medical purpose [101] [12].

• Industrial robotics: Robots are now a main component in manufacturing and

logistics industries. Industries have been using robots for tasks which are

impossible or difficult for humans, such as working in a room filled with

hazardous substances, inside a furnace, etc. [43]. Several robotic application

4 1.2. MRS Applications

Robotic Applications

HealthCare Robotics

Industrial Robotics

Service Robotics

Military Operations

Search/Rescue missions

Exploration/Surveillance applications

Educational Robotics

Surgery Rehabilitation Assistance

Assembly

Line

Pick-Up

Delivery
Logistic

Sweeping Customer Care

Explosive

Ordinance

Disposal

Carrying

Weapons

Monitoring

Territories

Disaster

Rescue
Mapping

Structural

Inspection

In-Situ

Medical

Assessment

Space

Exploration

Underwater

Exploration

Sea

Surveillance
Archaeology

Engineering

Courses

Critical

Thinking
Psychotherapy

...

...

...

...

...

...

...

Figure 1.1 Classification of Robotic Applications

1.2. MRS Applications 5

studies in manufacturing industries have been mentioned in [33] including die

casting applications, forging applications, heat treatment applications, glass

manufacturing applications etc. All large-scale manufacturing industries es-

pecially automobile, component assembly, and many other industries involv-

ing tasks related to packaging, testing, and logistics rely on the use of robots

for efficient task completion [94]. Besides automation, robots are also used

for assisting humans in their activities in industries.

• Service robotics: Service robots are fully or semi-autonomous robots that

perform tasks useful for the well-being of humans except in manufacturing

related activities. Service robots are useful for performing tasks that are

trivial, dangerous, or repetitive for humans. Home service robots are one

such type of robots. They can be used for activities that range from cleaning

floor, kitchen, bathroom, windows, swimming pool to lawn mowing, washing

clothes, and many other activities [43] [94]. Besides home, service robots can

also be used for other services such as object pickup and delivery, customer

care, etc. [43].

• Military operations: Most of the military organizations around the world are

using different types of robots for situations that are risky for humans [92].

Robots are also cheaper to maintain than having the human personnel. Mil-

itary robots can be classified into three categories, which are ground robots,

aerial robots, and maritime robots [92]. These military robots are very of-

ten used for battlefield surveillance from ground, air and underwater level.

Ground robots are also being utilized for explosive ordinance disposal. Be-

sides carrying out surveillance operations in enemy territories, unmanned

aerial vehicles (UAVs) are also used for carrying missiles to attack enemy

sites.

6 1.2. MRS Applications

• Search and Rescue missions: Rescue robots are used to provide real-time

information about the situation to aid search and rescue missions. Rescue

robots are used for performing tasks such as searching in unstructured and

hazardous environments, reconnaissance and mapping, rubble removal, struc-

tural inspection, in-situ medical assessment and intervention, and providing

logical support [94]. Rescue robots can be utilized for many situations includ-

ing natural disasters, mining accidents, fire accidents, explosions, etc. [43].

Rescue robots are also useful for post-disaster experimentation [94]. A key

aspect of this application is that rescue robots must be autonomous and they

are supposed to work in an unstructured environment where any pre-existing

communication network may not work properly.

• Exploration/Surveillance application: Robots are a useful for collecting data

in unstructured environments, unknown territories, and from areas which are

difficult or impossible for humans to access. Space exploration, underwa-

ter exploration, and exploration in hazardous environments such as radiation

prone areas, wilderness, mines, damaged buildings, etc. are some examples

of this application [94]. Exploration or surveillance is an important part of

other applications too such as military operations, and rescue missions. Nav-

igation, coordination, and collaboration are three important tasks performed

by robots in surveillance applications. A lot of researchers are trying to de-

velop biologically inspired robots that can navigate in confined spaces and

perform complex tasks [53].

• Educational robotics: Robots are now being used in schools and universities

for the educational purpose also. Students can learn about multiple disci-

plines such as computer science, electronics, mechatronics etc. by develop-

ing robotic applications and learning from the experience [1]. However, there

1.2. MRS Applications 7

is a drawback with this approach as students only learn about robot related

fields. Several studies have been reviewed in [11] and it is observed that most

studies only help in teaching concepts related to physics and mathematics

such as Newton’s Law of motion, kinematics, fractions, etc. Students who

are interested in other fields such as music or arts do not get much benefit

out of this. There are few instances where robots have been used for teaching

students something different from mathematics or physics. In [104], Lego

robots have been used to teach about evolution. Lego robots have also been

utilized in [78] to improve social connection in individuals with autism and

Asperger’s syndrome. This shows that robots have huge potential for contri-

bution towards education. Research efforts are required to find ways to use

robots for the development of skills such as critical thinking, problem solving,

teamwork, etc.

Chapter 2

DiMRS - a Distributed

Intelligent Multi-Robot System

2.1 Introduction

Experimental evaluation and validation are important for research in MRS. It often

happens that theoretical models and algorithms with perfect simulation results do

not work under real-world conditions. In MRS, these divergences are even more

amplified compared with single-robot system due to the large number of robots,

interactions between robots, and the effects of asynchronous and distributed control,

sensing, actuation, and communication. Therefore, it is crucial to build a testbed for

MRS to conduct multi-robot research [71]. In this section, we list key requirements

of a MRS and show how robotics community has progressed in building distributed

MRS over the years.

One of the earliest multi-robot systems is the Mataric R2 robots built in the

1990s (seen in Fig. 2.1(a)). They use a group of four robots to demonstrate and ver-

8

2.1. Introduction 9

(a) Mataric R2 (b) Khepera (c) Khepera II

Figure 2.1 Three kinds of robot for multi-robot system in early age

ify the group behavior such as foraging, flocking and cooperative learning [64]. For

each Mataric R2 robot, it equips piezoelectric bump sensors for collision detection,

two-pronged forklift for picking goods, six infrared sensors for object detection and

radio transceivers for broadcasting up to one byte of data per second. Nearly the

same time, the K-Team from Switzerland developed Khepera robot team in 1996

and Khepera II robot team in 1999 [74] seen in Fig. 2.1(b) and Fig. 2.1(c) re-

spectively. The size of the robot is reduced from 36-cm long (Mataric R2 robot) to

8-cm long (Khepera and Khepera II). The Khepera II robot has stronger functional-

ity than the Mataric R2 robot such as more powerful computation ability and more

reliable wireless communication. Due to the development of electronic technology,

the Khepera II robot also has a smaller size.

After the early age, more and more multi-robot systems are built in both labora-

tory and industry nowadays. Two representative multi-robot systems are Swarmbot

[69] [70] developed by McLurkin and iRobot for research purpose in 2004 (seen

in Fig. 2.2(a)) and Kiva [105] developed by Amazon for warehouse usage in 2007

(seen in Fig. 2.2(b)). Also, the research community has organized a lot of multi-

robot competitions such as RoboCup for robotic soccer, MAGIC competition for

military surveillance and MicroMouse for maze exploration. A lot of multi-robot

10 2.1. Introduction

(a) Swarmbot (b) Kiva

Figure 2.2 Two representative multi-robot system in recent years: Swarmbot for research

purpose and Kiva for industry usage

systems result from these competitions such as AIBO dog [17], NAO humanoid

[41] and Cmdragons [13].

We have observed several features of a multi-robot system:

• Cost: inexpensive for each single robot. A general purpose for MRS is to let

quantities of agents, each of which owns limited ability, to achieve a complex

system-level target. The system must be designed to be inexpensive to allow

researchers to incrementally increase the size of the system. When a multi-

robot system is scaled up, it will be hard to cover the fee if each individual

robot is highly expensive.

• Size: small size for each single robot. Given limited space, robots with the

large size may have problems of frequent collisions, communication blocking

and less flexibility. Also, robots in huge size go against the scalability of the

whole system.

• Functionality: stable and strong sensibility for each single robot. If ev-

ery robot has stable functionality, the whole system can be reliable enough.

2.1. Introduction 11

Stronger the sensibility is, more information it may acquire from itself, the

environment and other robots. Hence, the whole system may achieve more

complex tasks.

As we know, stronger functionality may result in larger size and higher cost. There-

fore, to build a MRS it is crucial to find a balance between cost, size and function-

ality.

Though there have been a lot of multi-robot systems, most of them are con-

trolled in centralized way. In another word, there is a central controller to schedule

the robots to perform cooperative tasks. Centralized multi-robot system can be

hardly scaled up due to limited computation capability of the central controller.

Hence, scholars transfer their research direction to distributed multi-robot system

[34]. There are varieties of active research topics that explore efficient algorithms

to control distributed multi-robot system, such as self-reconfiguration [3] [89] and

exploration [48] [14]. Scholars generally envision their algorithms to be feasible for

a distributed multi-robot system consisting of hundreds, thousands and even more

robots [25] [3] [97]. However, these algorithms are usually evaluated in simulator

only [3] [89], or deployed on a small group of tens of robots or fewer [51] [49] due

to cost, time or complexity. As we previously mentioned, a simulator can hardly

model robots’ movement, communication and sensibility in a precise way. There-

fore, it would be significant if a large-scale distributed MRS can be built up for

algorithm evaluation.

A MRS is said to be fully distributed [81] if each robot in the system supports:

• Distributed control: to process gathered information and to make the decision

locally while achieving the system-level goal.

• Distributed sensing: to sense itself, the environment and other robots locally.

12 2.2. ExistingMRS

(a) Kilobot (b) R-one (c) Khepera IV

(d) E-puck (e) Scarab

Figure 2.3 Five representative robots suitable for multi-robot system nowadays

• Distributed actuation: to navigate freely in the environment without collision

with obstacles and other robots.

• Distributed communication: to receive and transmit data from other robots in

a scalable robot network.

2.2 Existing MRS

2.2. ExistingMRS 13

Ta
bl

e
2.

1
A

co
m

pa
ri

so
n

of
off

-t
he

-s
he

lf
m

ul
ti-

ro
bo

ts
ys

te
m

s
in

te
rm

s
of

fu
nc

tio
na

lit
ie

s
an

d
ha

rd
w

ar
e

K
ilo

bo
t

R
-o

ne
K

he
pe

ra
IV

E
-p

uc
k

Sc
ar

ab

So
ur

ce
H

ar
va

rd
U

R
ic

e
U

K
-T

ea
m

E
PF

L
Pe

nn
sy

lv
an

ia
U

L
oc

om
ot

io
n

vi
br

at
io

n

w
he

el
en

co
de

rs

3-
ax

is
gy

ro

3-
ax

is
ac

ce
le

ro
m

et
er

w
he

el
en

co
de

rs

3-
ax

is
gy

ro

3-
ax

is
ac

ce
le

ro
m

et
er

w
he

el
en

co
de

rs

3-
ax

is
gy

ro

3-
ax

is
ac

ce
le

ro
m

et
er

w
he

el
en

co
de

rs

3-
ax

is
gy

ro

3-
ax

is
ac

ce
le

ro
m

et
er

Se
ns

ib
ili

ty
1

IR
ra

ng
e

se
ns

or

8
IR

ra
ng

e
se

ns
or

s

8
bu

m
p

se
ns

or
s

4
lig

ht
se

ns
or

s

a
sp

ea
ke

r

8
IR

ra
ng

e
se

ns
or

s

8
lig

ht
se

ns
or

s

4
IR

cl
iff

se
ns

or
s

5
ul

tr
as

on
ic

ra
ng

e
se

ns
or

s

1
m

ic
ro

ph
on

e

1
sp

ea
ke

r

1
co

lo
rc

am
er

a

8
IR

ra
ng

e
se

ns
or

s

8
lig

ht
se

ns
or

s

1
m

ic
ro

ph
on

e

1
sp

ea
ke

r

1
co

lo
rc

am
er

a

la
se

rr
an

ge
se

ns
or

hi
gh

-r
es

co
lo

rc
am

er
a

C
om

m
un

ic
at

io
n

IR
si

gn
al

IR
si

gn
al

ra
di

o

80
2.

11
b/

g
W

iF
i

B
lu

et
oo

th
2.

0
E

D
R

ra
di

o
ra

di
o

C
om

pu
ta

tio
n

8M
H

z
A

tm
eg

a3
28

32
kB

M
em

or
y

50
M

H
z

A
R

M
C

or
te

x-
M

3

64
K

B
SR

A
M

25
6K

B
Fl

as
h

80
0M

H
z

A
R

M
C

or
te

x-
A

8

51
2M

B
R

A
M

51
2M

B
Fl

as
h

4G
B

Fl
as

h
fo

rd
at

a

M
ic

ro
ch

ip
ds

PI
C

M
C

U

8K
B

R
A

M

14
4K

B
fla

sh
Fl

as
h

/*

B
at

te
ry

lif
e

(h
)

3-
24

4
7

1-
10

/*

Si
ze

(c
m

)
3.

3
10

14
7.

5
22

.2

C
os

t(
$)

14
22

0
26

25
54

5
30

00

*
no

ts
pe

ci
fie

d

14 2.2. ExistingMRS

Knowing basic elements for a distributed MRS, we characterize some typical

MRSs in detail and compare their functionality and cost. The criteria are to select

open-source, still active and relatively high-impact MRS. The summary of compar-

ison can be seen in Tab. 2.1. In detail, five multi-robot systems are considered as

follows: Kilobot [86] [85], r-one [66], Khepera IV [96] (evolved from Khepera III

[82]), e-puck [73], Scarab [71].

• The Kilobot1 (seen in Fig. 2.3(a)) is designed by the K-Team and used in SSR

lab of Harvard University. Kilobot is a low-cost robotic system especially

suitable for research of swarm robotics. The functionality of each individual

Kilobot is limited, i.e., only can sense the distance from its neighbor, sense

the intensity of visible light and receive/transfer message from/to its neigh-

bors. However, a collective of Kilobot achieve relatively complicated behav-

iors such as generating different shapes [88] and transporting large objects

[87]. This kind of robotic system in which every robot is with limited ability

while can achieve complicated behavior together is called swarm robotics.

It is inspired by biological swarm behaviors [80] such as bird flocking and

ant manipulation. Another such kind of system is the I-Swarm [52] from

the University of Stuttgart. However, the robot Jasmine in I-Swarm is far

more expensive ($130) compared with Kilobot ($14) while the functionality

is similar. Simple functionality makes low-cost possible, on the other hand,

limits the feasible environment. For example, a message is transmitted us-

ing the reflection of infrared signals. Therefore, the floor where the Kilobots

move must be smooth enough, or infrared signals may not reach individual’s

neighbors.

1http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html

http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html

2.2. ExistingMRS 15

• The r-one2 (seen in Fig. 2.3(b)) is designed and used in Rice University.

r-one is a relatively low-cost robot that enables large-scale multi-robot re-

search and education. In terms of locomotion, each robot is equipped with

two-wheel encoders, a 3-axis gyro and a 3-axis accelerometer to move on a

floor with awareness of odometer, speed and acceleration. With respect to

communication, there are two kinds of communication method. First one is

to use infrared transmitter and receiver to achieve directional communication

and second one is to use radio to achieve nondirectional communication with

higher bandwidth. The sensing ability is provided by using 8 bump sensors

for 360◦ detection. r-one provides ample functionalities at a low cost which

has motivated its use for education area application [68]. Several courses are

taught using r-one . r-one can also be used for multi-robot manipulation [67]

and transportation [46] if each robot is equipped with a gripper.

• The Khepera IV3 (seen in Fig. 2.3(c)) is designed and made by K-Team. It is

a commercial robot with abundant and powerful functionality compared with

non-commercial ones. A standard Khepera IV has the same equipment for

locomotion as r-one. For the communication part, Khepera uses 802.11 b/g

Wi-Fi and Bluetooth 2.0 EDR for wireless communication instead of infrared

signals or radio. Khepera IV has strong sensibility due to the presence to mul-

tiple sensors. A Khepera IV is equipped with five ultrasonic transceivers and

eight infrared sensors for obstacle detection, four extra infrared sensors for

cliff detection, one microphone and one color camera for multimedia func-

tions and twelve light sensors and three programmable LED for human-robot

interaction. Besides, Khepera IV is highly extensible. Developers may extend

2http://mrsl.rice.edu/projects/r-one
3http://www.k-team.com/khepera-iv

http://mrsl.rice.edu/projects/r-one
http://www.k-team.com/khepera-iv

16 2.2. ExistingMRS

native functions using the generic USB, Bluetooth devices and custom boards

plugging into the KB-250 bus. Khepera IV wrap the remarkable abilities of

sensing, communication and locomotion in a small body of 14-centimeter di-

ameter. However, the cost of each Khepera IV is over 2600 US dollars. The

Khepera series robot is adopted by DISAL of EPFL and is used for various

research topics such as multi-robot learning [29] and odor plume tracing [95].

• The e-puck4 (seen in Fig. 2.3(d)) is designed and made by EPFL. E-puck

designer Francesco Mondada started with the Khepera group and moved to

make simpler education robots. An e-puck is equipped with two-wheel en-

coders, a VGA camera, three omnidirectional microphones, 3-axis accelerom-

eter, eight infrared sensors and eight ambient light sensors. Also, e-puck is

only 7cm long and easy to extend functionality. For instance, rotating scan-

ner and turret with three linear cameras are two optional extensions. E-puck

is specially designed and widely used for education purpose [20]. It is used

in the teaching areas of signal processing, automatic control, behavior-based

robotics, distributed intelligent systems and position estimation and path find-

ing of a mobile robot [73]. In addition, e-puck is also used in many research

topics such as supervisory control theory [60] and distributed control strategy

[93].

• The Scarab shown in Fig. 2.3(e) is designed and made at the University of

Pennsylvania. Compared with other robots, the design of Scarab shifts from

minimal multi-robots to a complex and robust system. Two of the major com-

ponents in a Scarab is the Hokuyo URG laser range finder and the Point Grey

Firefly IEEE 1394 camera. Using the laser and camera, Scarab is capable of

the tasks requiring strong sensibility and high computation payload such as

4http://www.e-puck.org/

http://www.e-puck.org/

2.2. ExistingMRS 17

SLAM (simultaneous localization and mapping) [84] and vision processing.

However, A Scarab is significantly large, heavy and expensive with 23cm di-

ameter, 8kg weight and over 3000-dollar cost. Consequently, Scarab is not

practical for large populations i.e., more than ten Scarabs working together.

But using less than five Scarabs for multi-robot SLAM is applicable [90].

Chapter 3

Programming Large-Scale

Multi-Robot System with

Timing Constraints

3.1 Introduction

The remarkable progress of robotics technology has made it feasible to deploy a

large number of inexpensive robots with complicated tasks. The robots together

form a multi-robot system (MRS), which has better reliability, flexibility, scala-

bility and versatility than a single-robot system. There has been quantities of ap-

plications for MRS, such as multi-robot exploration, multi-robot surveillance and

multi-robot manipulation. However, the management of the robots is a challenging

issue. Among the difficulties towards managing MRS, one of the most important

is the lack of dedicated tools. In particular, one problem that is significant but has

received little attention is the programmability. To be specific, a scalable program-

18

3.1. Introduction 19

ming model is required to program MRS containing thousands or even millions

of robots. Moreover, the programming model is supposed to support setting tim-

ing constraints on the behaviors of the robots, which is required in many real-time

multi-robot applications.

Traditionally, robots are programmed using an imperative programming paradigm.

Such programming tasks are expensive in terms of time consumption and code

complexity. For example, the robots in our lab are programmed with embedded

C, which is an imperative programming language. There are some other domain-

specific imperative programming models such as TinyOS [47], Swarm [72], Paintable

Computing [16], and CAs [63], all of which focus on the behavior of individual de-

vices instead of the aggregate.

General multi-robot applications require coordinated movements with real-time

decision making capabilities in an unstructured environment. Hence, with respect to

programming a group of robots, the tasks of communication and coordination needs

to be abstracted instead of being explicitly written for each of the robots. There have

been several research efforts to develop such programming models. Unfortunately,

all of them have focused on a dedicated programming model for a specific applica-

tion.

Early success in the development of programming models that enable program-

mers to think on a macroscale arose from the field of overlay networks and sensor

networks. P2[59] and SNLog [19] showed that logic programming approach could

be used to allow an ensemble to be programmed as a whole. Other such program-

ming models for sensor networks include Hood [103], TinyDB [62] and Regiment

[75]. However, these sensor network programming models are limited by their fo-

cus on sensing and data gathering without attending to actuation and control. More-

over, they presume a static network of immobile nodes which changes infrequently

due to node failures. A notable exception is Pleiades [55], which could be used

20 3.1. Introduction

in situations with dynamic network topologies of sensor networks. But owing to

adoption of a programming style similar to OpenMP [23], it eventually leads the

programmers to focus on individual modules instead of the whole ensemble.

Inspired by the logic programming approach for sensor networks, researchers

tried to extend their application for mobile robots. For example, Proto [9], which is

effective for programming stationary sensor-actuator networks as a whole, has been

extended to mobile robots as Protoswarm [7]. Protoswarm is a functional language

that uses Amorphous Medium Abstraction [6] for programming MRS. LDP [26]

is derived from a method for distributed debugging but is originally designed for

modular robotics. While it works well in highly dynamic systems, it can lead to

excessive messaging in more static environments.

Meld [4][5] is another logic programming language for modular robots that

enables the programmer to specify high-level logic of what is to be decided or

achieved, and leaves the low-level details of data manipulation and communication

to the implementation of the programming language. However, it is restricted to

applications on modular robots which are independently executing modules robots

where inter-robot communication is limited to immediate neighbors. Moreover, for

many real-time multi-robot applications, besides being logically correct, satisfying

certain temporal constraints is a hard demand to successfully achieve final targets

with high precision. Meld doesn’t provide any mechanism to support real-time

scheduling of the robots.

In this work, we proposed and designed a new programming model for MRS,

called RMR. It follows the logic programming paradigm, which enables it to achieve

high scalability. Moreover, it allows developers to specify timing constraints on the

behaviors of the robots, such as setting deadlines and identifying the time orders

of actions. To support distributed execution of RMR programs, a compiler and a

runtime system are developed for RMR. The compiler is able to convert the RMR

3.1. Introduction 21

Figure 3.1 Example application: multiple robots are passing through a narrow corridor

programs into executable byte-codes, and then distribute the byte-codes to each

robot. The runtime system is responsible for interpreting and executing the byte-

codes. To evaluate the performance of RMR, we deployed RMR in a simulator

and a realistic test-bed, and then developed several example applications. Fig. 3.1

shows one of the applications utilizing RMR, in which multiple robots cooperate

with each other to pass through a narrow corridor. Our main contributions are:

• We designed and proposed a new programming model called RMR for MRS.

RMR allows programmers to specify timing constraints for large-scale MRS

in a easy-to-use fashion.

• We implemented and deployed RMR in both a simulator and a realistic test-

bed. To support distributed execution of RMR programs, we developed a

compiler and a runtime system. Furthermore, we did solid real-world experi-

ments to evaluate the performance of RMR.

The reminder of the paper is structured as follows. Section 3.2 introduces the

design philosophy and main features of RMR. In Section 3.4, we first describe

the compiler of RMR, and then present the mechanisms in our runtime system to

support the distributed execution of RMR programs. The deployment of RMR in

22 3.2. Design Principle

both simulator and realistic test-bed and the evaluation in introduced in Section 3.5.

Section 3.6 concludes the paper with some future improvement directions.

3.2 Design Principle

Logic programming has a long history and there exist a number of variants of logic

programming languages. Commonly, a logic programming language encompasses

a set of facts and rules as its basic elements. Facts can be used to specify system

states, sensed physical events, system configuration, etc, while rules allow program-

mers to describe how the system evolves. In practical applications, it is important to

design good abstractions to mask the complexity of programming MRS, and mean-

while provide real-time guarantee for the coordination of the MRS. To this end, the

following principles are considered on designing RMR.

3.2.1 Ensemble-level abstraction

With respect to a group of robots assigned with a task, it is nature to think about

what the robot ensemble as a whole should do. This leads us to consider the deign

principle of ensemble-level abstraction. The entire MRS can be viewed as a sin-

gle and monolithic unit while programmers write RMR program. RMR enables a

developer to think about what the whole set of robots should do in a global and

easy-to-understand perspective, and hide the detailed and complex implementation

of how to do. This greatly simplifies the programming process, and benefits the

developers to program MRS with a large number of robots. This abstraction tech-

nique is also used in programming modular robots [4], and is referred to as macro-

programming in the area of wireless sensor networks [44].

3.2. Design Principle 23

3.2.2 Combination of forward and backward reasoning

In logic programming, forward reasoning and backward reasoning are two main

methods of reasoning. Backward reasoning starts with a list of goals and works

backwards from the consequent to the premises to see if the consequent is available.

Backward reasoning is often used to specify the direction of reasoning, e.g. in

Prolog [76]. One the contrary, forward reasoning starts with the available premises

and uses rules to derive new facts until the goal is reached. Forward reasoning is

often used to speed up the execution of programs, e.g., in Meld [22].

Both backward reasoning and forward reasoning have advantages and disadvan-

tages. It is natural to expect that the general performance of the system could be

improved by combining the two kinds of reasoning. RMR successfully combines

forward and backward reasoning in the execution of RMR programs. In this way,

RMR will derive facts with specific direction while guarantee the execution speed

of the RMR programs.

3.2.3 Declarative specification of timing constraints

In MRS, it is likely that a series of reasoning steps are involved in order to perform

a job. When a developer writing a program, he mainly concern about the global

deadline of finishing the entire job rather than the local deadlines of individual rea-

soning steps. For example, in wireless sensor-actuator networks, the system need to

respond in real-time to the physical world events captured by sensors. Actually, this

is a complicated “sensing-decision-actuation” process involving many intermediate

steps, such as data aggregation for complex event detection. It is highly desirable

that the developers only need to describe the global deadline of the entire job and

need not to worry about how the local deadlines can be meet at the intermediate

steps. This style is referred to as a declarative specification of timing constraints,

24 3.2. Design Principle

Ensemble-level

Program

Compiler

Node-level

Code

Runtime

System

Operating

System

Node-level

Code

Runtime

System

Operating

System

Node-level

Code

Runtime

System

Operating

System

...

Robot 1 Robot 2 Robot n

Figure 3.2 Overview of RMR Compilation

which has been incorporated in RMR.

With the above principles, RMR language will create a new way of writing pro-

grams for MRS. An overview of programming steps is shown in Fig. 3.2. The

highest level is the RMR program, which is written by programmers and obeys a

centralized, ensemble-level abstraction. A RMR compiler in the middle level is

able to convert the ensemble-level program into node-level byte-codes ran on indi-

vidual physical robots. To support the execution of such node-level code, a runtime

system embedded in the operating system is needed. The runtime system plays the

key role in ensuring the efficiency of distributed reasoning and the satisfaction of

deadline requirements. In the following sections of this paper, we will introduce

these components one by one.

3.3. Language Specification 25

3.3 Language Specification

The design principles in Section 3.2 enable us to design a language that can greatly

simplify programmers’ thinking processes and reduce their development efforts. In

the following, we will describe the detailed specification of RMR. RMR comprises

the following main elements.

3.3.1 Variable, Constant and Boolean Expression

RMR follows the conventions of logic programming model when defining variables

and constants. Variable names begin with an uppercase letter, whereas constant

names begin with a lowercase letter. Moreover, RMR supports boolean expressions

that can be calculated into boolean values (true or false).

3.3.2 Fact

Facts are generally in the form of predicates, and they can return boolean values

according to the results whether the facts are satisfied or not. Similar to constants,

the identifier of a fact should begin with a lowercase letter. A fact generally has

a predicate symbol (or name) and can take some arguments (variables) as input.

The first argument of a fact must be a robot, which indicates the owner of the fact.

Typically, a fact can be used to represent a system state, a detected event, or a

relation between its arguments. In RMR, facts are divided into three categories:

persistent fact, temporary fact and goal fact.

• Persistent facts refers to those that hold permanently, such as ID of a robot.

They can not be consumed along the program lifetime, and must be declared

with a bang mark ‘!’, which means “of course”.

26 3.3. Language Specification

// initial fact that R is in s

location(R, s).

// goal fact that go to middle if possible

?location(R, middle).

// rule 1: if R is in s, then go to middle

location(R, L), L = s -o location(R, middle).

// rule 2: if R is in s, then go to t

location(R, L), L = s -o location(R, t).

// rule 3: if R is in middle, then go to t

location(R, L), L = middle -o location(R, t).

Figure 3.3 RMR program to move a robot from area s to area t passing through area

middle without action

• Temporary facts are those representing a temporary state and can be con-

sumed. For example, movealong(A,L) is a temporary fact, which means an

intermediate state that robot A is moving along the line L.

• Goal facts represent the goals of the program that must be satisfied if possible.

They must be declared with a question mark ‘?’, which means “why not” or

“to be achieved”.

Persistent fact and temporary fact are generally used in logic programming lan-

guage while goal fact is proposed in our programming language and is one of the

new elements. Goal facts enable programmers to specify intermediate states in their

codes. This function is not supported in other logic programming language.

For example, if we want a group of robots to go from area s to a specified

area t while passing by area middle if possible. In traditional logic programming

language for robotic system, such as Meld [4], we can write that there is an initial

fact that the robots are in area s. Furthermore, there are three rules. The first one is

3.3. Language Specification 27

that if the robots are in area s, then they can go to area middle. The second one is

that if the robots are in area s, then they can go to area t. The last one is that if the

robots are in area middle, they can go to area t. Since there are two areas middle

and t to which the robots can go from s, the robots will randomly choose one of

them to go to. This is true because we can not specify the procedure how the robots

go from s to t in traditional logic programming language.

However, we can achieve it by adding a new element called goal fact into logic

programming language. The program is shown in Fig 3.3. In the program, we first

write down the initial fact and the three rules. Furthermore, we add a goal fact

?location(R, m), which means that “Why not go to the area middle if possible”.

In this way, when the program runs, it will only choose the the first rule to apply

and go to location middle if possible.

3.3.3 Action

As we have seen in Section 3.3.2, there are nothing involved with actuation and

motion in the robotics system. To support the motion control for realistic robots

in language, we introduce the concept of action. An action also has a predicate

symbol and can take some arguments as input. The first argument of an action also

must be a robot, which is the executor of the action. Unlike fact, actions must be

declared as an action type in previous, so that the actions will not stored and will

be consumed immediately. The introduction of “action” connects the programming

language and the realistic robot. A fact will only influence the execution of the

program, while an action can have effect on the physical environment and the robot

itself. To be specific, when an action is derived, there will be some underlying

function call according to the action rather than being inserted in to the database of

the facts. The programmers are able to define actions on their own.

28 3.3. Language Specification

type action moveto(robot, area).

location(R, s).

?location(R, middle).

// use action moveto instead

location(R, L), L = s -o moveto(R, middle).

location(R, L), L = s -o moveto(R, t).

location(R, L), L = middle -o moveto (R, t).

Figure 3.4 RMR program to move a robot from area s to area t passing through area

middle with action

function moveto(Area p) {

// control the robot to go to Area p

...

// insert the location fact back

VM.insert_fact(type_location, p)

}

Figure 3.5 The function moveto written in the operating system of a robot

3.3. Language Specification 29

We add actions in the example mentioned in Section 3.3.2 and the modified

program is shown in Fig. 3.4. We will explain how the robotics system evolves

in the following. At the head of the program, a predicate of moveto is declared

as a new action type. Firstly, there is a initial fact location(R, s) meaning that

the robot is in the area s. Then the runtime system will apply the first rule, delete

the fact location(R, s), and derive an action moveto(R, middle). The action

moveto(R, middle) will not be inserted into the database of the facts but will call

the underlying function moveto in the operating system, which is demonstrated in

Fig. 3.5. The function moveto will control the robot to go to the area middle

and insert a new fact location(R, middle) back into the runtime system of the

robot. In this time, the robot will have a new fact location(R, middle) and the

robotics system continues to evolve.

3.3.4 Rule

Rules have the following structure:

p1, p2, · · · , pm -o q1, q2, · · · , qn

where qi(i = 1, 2, · · · , n) are facts or actions, and pi(i = 1, 2, · · · ,m) are facts or

boolean expressions. The interpretation of the above expression is that all qis can

be derived if all pis in the body of the rule are satisfied. Commas in the body are

interpreted as logical conjunction. The rules make the derivation of new facts and

new actions from existing facts possible.

For example, a rule

online(A,L) -o {B | edge(A,B) | ready(B,A)}

means that if robot A is on the line L, then a fact that A is ready will be derived in

any robot B who has an edge with A. Here, the braces are the symbol of a compre-

30 3.4. Compiler and Runtime System

hension, which enables the repeated application of a rule and is also used in other

logic programming language. Also, the programs in Fig. 3.3 and Fig. 3.4 also

contain some examples about the usage of rules.

3.3.5 Time assertion

We develop a new construct in RMR called time assertion to allow developers to

specify timing constraints in declarative fashion. Specifically, the time assertion for

a real-time job A should be described in the following form:

assert(sA, fA, dA, vA)

In the time assertion, sA and fA are facts (predicates) referring to the system states

when the real-time job A starts and ends, respectively; dA is the deadline that needs

to finish the job A; vA is an action that will be derived if a violation of the time

assertion is detected. Let us denote the physical time when the system state enters

sA and fA by tA and t′A, respectively. The above time assertion requires t′A − tA ≤ dA,

or vA will be derived.

For example, a time assertion

assert(offline(A,L), online(A,L), 10, broadcast(A))

means that if robot A does not move to the line L within 10 seconds since the last

time it is not on line L, it will broadcast a failure message.

3.4 Compiler and Runtime System

In this section, we will first introduce the function of our compiler, and then provide

a suit of runtime system to support the distributed execution of RMR programs.

3.4. Compiler and Runtime System 31

3.4.1 Compiler

The compiler is responsible for translating the code written in RMR to byte-codes.

The byte-codes will be easier to be interpreted by the robots than the RMR code.

Inside the byte-code file, there are hexadecimal data about the number of the facts,

the number of the rules, the offset to the description of the first fact, the offset to

the description of the fist rule and so on. Since the computational capability of

each robot is limited, it will be much better to read such hexadecimal data than the

strings in the original RMR code. During the compilation of RMR programs, the

ensemble-level code will be transferred to node-level code. Then the node-level

code will be distributed to each robot for interpretation and execution.

3.4.2 Workflow of the Runtime System

To run the byte-codes generated by the RMR compiler, we developed a runtime

system. The workflow of the runtime system is shown in Fig. 3.6.

When the robot is started, the runtime system will also be started using the func-

tion VM.startVM. Inside the function, the runtime system will be initialized with

the byte-codes at first. The initialization includes initializing the database of the

facts, inserting basic facts into the database, interpreting and storing the rules, han-

dling the actions and the time assertions, etc. Then, the runtime system will see if

the state of the system can be updated using the function VM.computePredicate.

In the function VM.computePredicate, the runtime system will see if there is

any satisfied rule. If so, a piece of selected rule will be applied, which means facts

may be deleted or added and actions may be derived. Then, if there is any new

actions or new facts derived due to the applied rule, there will be events passing

from the runtime system to the operating system of the robots. For example, if new

actions are derived, there will be an event called NEW_ACTION received in the op-

32 3.4. Compiler and Runtime System

void Robot.receiveEvent(EveType type, ArgList list)

if type is NEW_ACTION

processAction(n, list)

if type is NEW_FACT

Wait Until VM is not busy

VM.computePredicate()

Rule VM.selectOneRule()

highPriority = list()

lowPriority = list()

for i in range(0, NUM_RULE)

if rule(i) is satisfied

if goal facts can be derived in rule(i)

highPriority.push(rule(i))

else

lowPriority.push(rule(i))

if highPriority is not empty

return a random element in highPriority

if lowPriority is not empty

return a random element in lowPriority

return null

void VM.computePredicate()

busy = true

rule = selectOneRule()

if (rule is null)

busy = false

return

Process The Rule rule

if there is any Action ac derived:

robot.receiveEvent(NEW_ACTION, ac)

if there is any Fact derived:

robot.receiveEvent(NEW_FACT)

busy = false

void VM.startVM()

Do Initialization With The Byte-codes

VM.computePredicate()

Figure 3.6 The Workflow of the Runtime System

3.4. Compiler and Runtime System 33

Start

Event Activated

Initiator

Existed?

Request to Join

the Team

Received the

Waiting Time

Be the Initiator of a

Team

Wait N Seconds for

Robots to Join

Wait for the

Arranged Time

Schedule the Team

for new Robots

End

Figure 3.7 Distributed Scheduling

erating system of the robot, and the robot will react accordingly using the function

Robot.receiveEvent.

Now, we come back to the function VM.selectOneRule. This function is used

to select a piece of satisfied rule if any. To be specific, if there are any satisfied rules,

this function will classify the rules into two categories on the basis of whether goal

facts can be derived. The rules in which goal facts can be derived will have higher

priority to be applied. If there are multiple rules with same priority, the function

will randomly choose one to return. The usage of different priorities of different

rules makes the functionality of the goal facts possible.

34 3.4. Compiler and Runtime System

3.4.3 Distributed Scheduling

In the previous part 3.4.2, we figured how the facts, rules and actions work in the

runtime system. In this part, we will figure how the time assertions work. In Section

3.3.5, we introduce the specification of time assertion. In a time assertion, if the

starting event sA happens, the time assertion will be triggered. The robot will be

aiming at its finish event fA, which can be seen as its target. When multiple robots

are aiming at their individual targets, there may be high resource competition of

time and space among the robots. For example, when two robots are going to pass

through a narrow corridor at the same time, collision may happen if there is no

cooperation and coordination between them. To address such issue, we proposed

and implemented a distributed scheduling algorithm in the runtime system. Fig. 3.7

shows the flow chart of our algorithm. To be specific, our distributed scheduling

algorithm will schedule multiple robots with different deadlines for a same event to

make more robots satisfy their deadlines.

For a single robot A in which an event E is triggered, it will broadcast a message

to see if there has already been a leader for the event E at first. If there is a piece of

response message that robot B is the leader for event E, then robot A will transmit a

piece of message to robot B for purpose of joining the group of event E. Otherwise,

robot A will create a new group and serves as the initiator and leader of the event E.

After that, robot A will wait n seconds for new participators of event E. The waiting

time n will be properly set according to the deadline of event E in robot A. If robot

A waits for too long time, robot A will be more likely to miss the deadline. If the

waiting time is too short, the size of each group may be too small, which leads

to little coordination and worse performance. For a leader of an event E, it will

update the scheduling list if there is a robot trying to join the group of event E. The

scheduling list is maintained according to the deadline for the event.

3.4. Compiler and Runtime System 35

3.4.4 Path Planning

When a robot is scheduled to start moving, it has to plan its path from its current po-

sition to its destination. In this phase, we will introduce the path planning problem

for a group of robots. In our test-bed, we found that the physical distances between

robots in the same group are not too large. In the path planning algorithm, we can

utilize such property to save energy. Therefore, we will address the path planning

problem separately for the first robot to move (leader) and other robots (followers).

Different Algorithms for the Leader and the Followers

With respect to the leader, we utilize grid-based A* search algorithm as the path

planning algorithm, which is demonstrated in the following four steps:

• Overlay a grid graph on the working space

• Map the starting position S 1, the target position T1 and all the obstacles O1,

O2, · · · , Om into grid points S ′1, T ′1, {O11,O12, · · · ,O1n1}, {O21,O22, · · · ,O2n2},

· · · , {Om1,Om2, · · · ,Omnm}.

• Utilize A* search algorithm to find a shortest path P′1 from S ′1 to T ′1. The

result P′1 will be reduced based on the grid.

• Output the path planning result P1 as S 1 7→ S ′1 7→ P′1 7→ T ′1 7→ T1

For the followers, they will make full use of the leader’s planning result to de-

termine their paths. The planning result of robot k will be Pk : S k 7→ S ′1 7→ P′1 7→

T ′1 7→ Tk. In this way, we can save the energy, especially when the working space

is considerably huge.

36 3.4. Compiler and Runtime System

(a) Realistic Environment (b) Grid Overlay

Figure 3.8 Grid Overlay for the Environment

Grid Overlay

The size of our test-bed is approximately 1.5m × 1.5m, which acts as the working

space. We overlay a N × N grid graph on the working space. The decision of N

is of significance. If N is too large, the cost of path planning will be too huge.

Otherwise if N is too small, the obstacles in the working space cannot be properly

abstracted. In our work, we assign N to be 30, by which the test-bed is divided into

nine hundred 5cm × 5cm small grids. Fig. 3.8 shows the realistic environment of

our test-bed and the corresponding grid graph in which N equals 30. In the abstract

grid graph, the grey grids represents the obstacles while the white grids stands for

the reachable places.

Grid-Based A* Search Algorithm

After overlaying a grid graph on the working place, we want to find a path from

the starting position S to the target position T in the grid graph. First, we define

the connectivity in the grid graph: two grids are connected if their differences in

x-axis and y-axis are no more than 1. Moreover, we define the distance between

two connected grids as the Euclidean distance. That’s to say, the distance between

3.4. Compiler and Runtime System 37

Rv

Rv Rv

Rv

θ

θ

θ

θ

r1

r2

r3

Figure 3.9 the Field of View of the Robots

two grids sharing an edge is 1 while the distance between two connected grids

which do not share an edge is
√

2. Then, we use a best-first search strategy to find

a least-cost path from S to T. As we traverse the grid graph, we build up a tree

of partial paths. The leaves of this tree are stores in a priority queue that orders

the leaf nodes according to a cost function, which combines a heuristic estimate of

the cost to each T and the distance traveled from S. In detail, the cost function is

f (n) = g(n) + h(n). Here, g(n) is the known cost of getting from S to node n, which

is tracked by the algorithm, and h(n) is a heuristic estimate of the cost to get from n

to T. In our algorithm, h(n) is set as the Euclidean distance between node n and T.

We can prove that h(n) is admissible since h(n) never overestimates the actual cost

to go to T.

3.4.5 Collision Avoidance

When the path of each robot has been determined, the robots will start moving in the

working space. At this point, collisions may happen between robots from different

38 3.5. Deployment

Figure 3.10 Simulation: multiple robots pass through a corridor

groups. Furthermore, in the same group, there can also be collisions on account of

out-of-control. Therefore, efficient mechanism is supposed to be proposed to guar-

antee collision-free movements. To achieve collision-free movements, we divide

the mechanism into two aspects: collision detection and collision avoidance.

With respect to collision detection, we can define the field of view by three pa-

rameters: orientation, angle of view and depth of view. Then problem of collision

detection is solved with knowledge of computational geometry. To be specific, if

there is a robot R2 who enters the field of view of another robot R1, we say colli-

sion is detected in robot R1, which is shown in Fig. 3.9. Our strategy of collision

avoidance is based on a principle that “stop if dangerous”. If some others robots or

obstacles appear in the field of view of a robot, it will stop its motion at once, and

then turn to another direction to continue its movement.

3.5 Deployment

To demonstrate the usefulness and evaluate the performance of RMR, we deployed

RMR in a simulator and a realistic test-bed, developed two example applications,

and tested the execution time of the first example application.

3.5. Deployment 39

3.5.1 Simulation

Our simulator is adapted from VisibleSim[28]. The simulator is even driven, which

means that everything is modeled as an event and is scheduled for processing. The

robot in the simulator maintains a list of events ordered by time to be processed. It

always consumes the one at the top of the event list. Consuming an event means

calling its associated callback function. For the application developers, there are

only two steps to do to add a user-defined event. The first step is to create a new

type of event inherited from the base event and the second step is to override the

callback function of processing it.

In VisibleSim, only wire communication is supported. We have altered the

communication approach from wire communication to wireless communication by

implementing a message pool. The message that a robot want to send will be pushed

into the message pool. After that, the message pool will deliver the message to the

target robots. The robots who receives a piece of message will receive an event

called ReceiveMessage. The robots are able to process the message by processing

the event. Furthermore, features of wireless communication, such as package loss

rate, bandwidth, communication range can also be simulated.

When our simulator starts to work, it first use RMR compiler to compile RMR

programs into byte-codes. Then, it initializes and renders the working space ac-

cording to a configuration file. Finally, its virtual machine interprets and runs the

byte-codes. Fig. 3.10 shows the simulation that six robots pass through a narrow

corridor. In the simulation, the six robots first form into a line facing the corridor

and then pass through the corridor in order.

40 3.5. Deployment

Figure 3.11 Real Picture of a Robot

3.5.2 Real-world Experiments

Our realistic test-bed is composed of three components, which are a localization

system, multiple (currently 9) intelligent robots and a programming environment.

Localization System

The location system consists of two ultrasonic sensor. Utilizing ultrasonic sensors

which broadcast ten times per second, each intelligent robot is able to get its posi-

tion on the domo platform.

Intelligent Robots

Our test-bed contains a set of robots, which use FreeRTOS [8] as their operating

system.

The robots are home-made in our laboratory. The real picture of one robot is

shown in Fig. 3.11. All the robots are in the same shape and with the same size,

which is approximately a cylinder with 7cm radius and 18cm height. At the bottom

of the robots are the wheels and motors. On the top of each robot, various sensors

are equipped. In the middle part, there is a 8.4V lithium battery, which supply

power for the whole robot.

3.5. Deployment 41

Left Motor
Driver

MCU

Magnetic Sensor
Accelerometer Sensor

Gyroscope Sensor
Ultrasonic Sensor

Wireless Communication Unit

Left
Wheel

Right Motor
Driver

Right
Wheel

Infra-red Sensors

MCU

Bus Power Management Unit

Top Board

Bottom Board

Figure 3.12 Structure Diagram of a Robot

The robot’s structure diagram is shown in Fig. 3.12. Each robot is powered

by the power management unit. In each robot, the microcontroller unit (MCU) is

responsible for data storage and processing. Inside the MCU, data can be stored

in either 8Mbit static random access memory (SRAM) or 512Kbit flash memory.

Each robot is driven by the motors driver unit, which can control the left motor

and right motor separately. The wireless communication unit, which uses IEEE

802.15.4 as its protocol, enables communication between robots. Received signal

strength indicator (RSSI) can be used to evaluate distances between it and other

robots. The sensors unit is used to acquire information from external environment,

which contains an accelerometer sensor, a gyroscope sensor, an ultrasonic sensor

and a magnetic sensor.

Equipped with different kind of sensors, the robots have various functions. Also,

more sensors can be equipped on the robots if necessary. For example, the ac-

42 3.5. Deployment

celerometer sensor can be used to calculate the moving distance. The magnetic

sensor is used to determine the orientation of each robot. And the ultrasonic sensor,

communicated with the beacons in the localization system, the robots can be aware

of where they are on the platform.

Programming Environment

The programming environment is based on FreeRTOS[8], a popular real-time oper-

ating system kernel for embedded devices. In FreeRTOS, programmers can define a

set of tasks with priority to be executed concurrently. For example, a task to control

motors, a task to get information from embedded sensors, a task for localization

and a task for purpose of user-defined application. Then, in every time unit (1/60

second in this test-bed), the tasks will be executed one by one according to the pre-

defined priorities. If not all tasks can be finished during the time unit, tasks with

lower priorities may be neglected.

Based on FreeRTOS, we successfully deployed RMR in our robots with three

steps. At first, we compile the RMR source program into node-level byte-codes

using the compiler and write them into the SRAM of each robot. Then, we create

a task as the runtime system for each robot to interpret and run the byte-codes.

Finally, we write the callback functions in the robots’ operating system triggered

by the runtime system if any. To summary, RMR is deployed into the robots by

creating a parallel task as the runtime system for RMR program. In addition, a

tiny database is implemented to manage (insert, delete, and query) the facts and the

time assertions are stored in a priority queue (sorted by time) and are triggered by

hardware interrupts.

3.5. Deployment 43

(a) rectangle (b) triangle (c) rhombus

(d) line

Figure 3.13 Example application: formation control of multiple robots

3.5.3 Example Applications

We developed two example applications to demonstrate the usefulness of RMR.

Fig. 3.1 and Fig. 3.13 show demos implemented by RMR in our test-bed. In Fig.

3.1, multiple robots are attempting to pass through a narrow corridor. The robots

coordinate with each other to form a line formation facing the corridor, and then

move through the corridor in order. In Fig. 3.13, formation control is implemented

to enable four robots to generate different shapes of formations. The robots first

form into a rectangle in Fig. 3.13(a). Then they form into the shape of triangle in

Fig. 3.13(b), rhombus in Fig. 3.13(c), and line in Fig. 3.13(d) respectively.

We further evaluate the efficiency of the runtime system in the first demo. In de-

tail, we conduct experiments in our test bed to observe how execution time changes

as the number of robots increase. Here, the execution time refers to the total time

spent on starting up robots, moving forward based on the planned path and lining up

at the destination. We run the first application with from one to five robots and count

the execution time. As illustrated in Fig. 3.14, the result shows that the total execu-

44 3.6. Conclusion

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Robots

0.0

0.5

1.0

1.5

2.0

2.5

E
x
e
cu

ti
o
n
 T
im

e
(m

in
)

Multiple Robots Pass Through a Narrow Corridor

Figure 3.14 Execution time of system with the increasing number of robots

tion time increase slowly as the number of robots increase, which demonstrates the

efficiency of our runtime system.

3.6 Conclusion

While programming MRS with real-time requirements is a difficult task at present,

it can be greatly simplified by making use of appropriate programming models. In

this paper, we presented RMR, a new programming model targeting at program-

ming large-scale MRS with timing constraints. With the new elements “action”

and “time assertion” proposed in RMR, RMR enables programmers to specify mo-

tions and real-time requirements in multi-robot tasks. After designing RMR, we

developed a compile system and a runtime system to support the distributed execu-

tion of RMR programs. Furthermore, we have deployed RMR in a simulator and

a test-bed to demonstrate the usefulness and evaluate the performance of RMR. By

means of experiments in a real deployment, we claimed that RMR is easy-to-use

programming model for multi-robot applications with timing constraints. In the

3.6. Conclusion 45

future, we can improve the performance of the runtime system by proposing more

efficient mechanisms of distributed scheduling and others. Also, we can improve

the programming model to enhance the real-time support for MRS.

Chapter 4

Uniform Circle Formation by

Asynchronous Robots: A

Fully-Distributed Approach

4.1 Introduction

In recent years, advances in robotics, microelectronics and other related fields have

made it feasible for engineers to fabricate inexpensive robots. It has been a trend

in the robotics community to use a set of robots to accomplish the tasks instead

of a single robot. The group of robots working in collaboration with each other is

commonly referred to as a multi-robot system (MRS) [61][79]. The use of MRS

provides better scalability, reliability, flexibility, versatility and helps in performing

the tasks in a faster and cheaper way compared to single robot systems [2]. MRS can

be very useful in search and surveillance applications, in particular in areas which

are difficult or impossible for humans to access. Another benefit of MRS is that

46

4.1. Introduction 47

they have better spatial distribution [106]. Many applications such as underwater

and space exploration, disaster relief, rescue missions in hazardous environments,

military operations, medical surgeries, agriculture and smart homes can make use

of distributed group of robots. It would not only be difficult but also may result in

wastage of resources if such applications are developed using single robot systems.

In many multi-robot applications, a group of autonomous robots is required

to eventually form a predefined geometric pattern such as a circle [18][27] or a

line. This problem, namely pattern formation problem [40], is one of the most

important coordination problems for MRS. There are various advantages to forming

a pattern such as enhancing coordination efficiency of the system and reducing outer

impacts on the system. The pattern formation problem is also closely related to the

agreement problem, which is a fundamental problem in distributed computing. For

example, forming a single point corresponds to the gathering problem requiring all

robots to gather at the same location, not determined in advance.

Pattern formation problem has been a hot research topic in the field of MRS

for a long time [77]. A particular pattern extensively studied in literature is the

uniform circle [30][31][36][37], in which the points form a regular polygon. The

corresponding problem is called uniform circle formation. The problem of uniform

circle formation plays a major role in the coordination problems in MRS due to the

critical observation of formability by Suzuki and Yamashita [100]. Their observa-

tions indicate that uniform circles and points are the only patterns formable from

arbitrary initial configuration in Fsync (and thus also in Ssync and Async) [37].

The problem of uniform circle formation can be easily solved in a centralized

MRS, in which there is a central computing station. The station knows all the

information of the system and is responsible for computing all the actions of the

robots. In this case, the problem of uniform circle formation can be mapped as a

minimum weight maximum matching problem (MWMMP), in which a set of robots

48 4.1. Introduction

are assigned with a set of target formation positions, and the weight is the sum of

distances from each robot to its goal position. MWMMP is a typical combinatorial

optimization problem, which can be modeled as an integer linear programming

problem and optimally solved in polynomial time [21].

However, the uniform circle formation problem becomes very challenging for

distributed MRS, in which there is no centralized computing station. The robots

have to make decisions by themselves independently, e.g., when and where to move,

and how to avoid collisions. Moreover, each robot can only communicate with other

robots inside its communication range. In this case, the robots do not even know

the total number of robots. Therefore, there are many difficulties on how to make

a consensus on the circle to form and how to achieve the uniform circle through

distributed coordination among the robots.

In this paper, we consider the problem of uniform circle formation for dis-

tributed MRS [50]. To solve the problem, we first decompose it into three parts,

namely consensus on circle, circle formation and uniform transformation. In the

part of consensus on the circle, the robots estimate the total number of robots in

the MRS and decide the center and the radius of the circle to form. In the part of

circle formation and uniform transformation, the robots form a circle first and then

move along the circle to make themselves evenly distributed on the circle. After

designing our algorithm, we deployed it in our test-bed. Fig. 4.1 shows the run-

ning examples in which six, seven and eight robots are forming uniform circles

respectively. We can see that our algorithm can successfully arrange the MRS into

uniform circles with different numbers of robots and different initial configurations.

The contributions of this work are:

• We formulate the uniform circle formation for distributed MRS and propose

a three-phase solution, namely consensus on the circle, circle formation and

4.1. Introduction 49

(a) 6 robots, initial configuration (b) 6 robots, final configuration

(c) 7 robots, initial configuration (d) 7 robots, final configuration

(e) 8 robots, initial configuration (f) 8 robots, final configuration

Figure 4.1 several robots are forming uniform circles

50 4.2. Preliminaries

uniform transformation, to this problem.

• We propose distributed algorithms for convex hull construction and cardi-

nality estimation for MRS. We evaluate their performance and efficiency by

simulation and theoretical analysis. The results show that our algorithms out-

perform existing ones. Furthermore, these algorithms can widely be applied

in other distributed systems.

• We deploy in a realistic test-bed to test our solution. Successful experiments

have implied the practicability and effectiveness of our solution.

We organize the rest of the paper as follows. Section 4.2 introduces the system

model and problem definition. A three-phase fully-distributed approach, as well as

the simulation and theoretical analysis, are discussed in Section 4.3. In Section 4.4,

successful deployment in our test-bed is demonstrated. Finally, related works are

discussed in Section 4.5 and Section 4.6 concludes the whole paper.

4.2 Preliminaries

In this section, we introduce the computational model of the system in Section 4.2.1

and formally formulate the uniform circle formation problem in Section 4.2.2.

4.2.1 System Model

Consider a set of n computational entities R = {r1, · · · , rn}, namely robots, located

on a Euclidean plane R2, on which they can move continuously. The robots are

capable of localization, communication, and sensing. For robot ri at time t, it is

aware of its position and orientation pt
i = (xt

i, y
t
i, θ

t
i) under a common Cartesian co-

ordinate system, where θti is the clockwise angle to the direction of the y-axis. Each

4.2. Preliminaries 51

robot can send and receive messages to and from its neighbors within a common

communication range Rc. Besides communication, each robot can detect the rela-

tive positions of its neighbors within a common sensing range Rs. All robots are of

identical size R, which is the radius of the smallest circle that wraps the robot. The

only way to distinguish different robots is to use their unique identifiers r1, · · · , rn.

The identifiers can only be conveyed via wireless communication.

Definition (Configuration) Ct = {pt
1, · · · , p

t
n} is the collection of positions of all

robots at time t.

Definition (Collision-free Configuration) A configuration Ct is said to be collision-

free if the Euclidean distance between pt
i and pt

j is no less than 2R for all 1 < i <

j < n.

Definition (Active Range) The active range Ra of the robots is defined as the min-

imal value between communication range Rc and sensing range Rs. Two robots are

connected if they are within the connected range of each other.

Definition (Connected Configuration) A configuration is said to be connected if for

all pt
i, there exists at least one pt

j (j , i) such that the Euclidean distance between

pt
i and pt

j is no more than Ra.

In the beginning, we assume that the whole system R is in a collision-free and

connected configuration. This means the robots do not collide with each other, and

there is no isolated robot in the system. Note that the assumption of full connectivity

is necessary, otherwise the whole system will be divided into several small groups,

and the problem is going to be solved in several small MRSs separately. Fig. 4.2

gives an example of an initial configuration of 8 robots. In the example, each robot

can only sense and communicate locally, and all robots are identical in the system

and form a distributed MRS.

52 4.2. Preliminaries

x

y

Active Range

Robot

Connected Robots

r1
r2

r3

r4

r5

r6

r7

r8

Figure 4.2 An example of initial configuration. It is collision-free and connected.

Then, the robots repeatedly execute Sense-Process-Act cycles. Each cycle can

be divided into three sequential phases as follows:

• Sense. The robot observes and collects data in the environment, itself and

its neighbors. The collected data includes the position of itself, the relative

positions of the robots within Rs and the messages from the robots within Rc;

• Process. The robot executes a given deterministic algorithm, which takes the

collected data as input and outputs the next position to go to and the messages

to deliver. Note that the algorithm is the same for all robots;

• Act: The robot moves directly toward the destination point (or stays still)

4.2. Preliminaries 53

S P A S P A S P A S P A

S P A S P A S P A S P A

S P A S P A S P A S P A

r1

r2

r3

S P A S P A S P A

S P A S P A

S P A S P A S P A

r1

r2

r3

S P A S P A S P A

S P A S P A

S P A S P A S P A

r1

r2

r3

FSYNC

SSYNC

ASYNC

time

S

P

A

Sense

Process

Act

Figure 4.3 An illustration of execution of the Sense-Process-Act cycles of three robots

for the models of Fsync, Ssync, and Async.

along a line segment and delivers the messages. The destination point and

the messages to deliver are computed in the previous Process phase.

The robots are asynchronous with respect to their Sense-Process-Act cycles.

That is to say, the execution of each Sense-Process-Act cycle of each robot is not

only completely arbitrary but independent of the cycles of the other robots as well.

In particular, it can be an arbitrarily long duration from the time a robot collects

data to the time it moves based on the data. Also, one robot may be starting the

Sense phase while another robot is performing the Act phase. This computational

model is called asynchronous (Async, also called Corda) [38], which is the most

general model in distributed systems.

There are two other computational models Fsync and Ssync, which have more

restrictions than Async. The robots are fully synchronous (Fsync) if all robots start

every Sense-Process-Act cycle simultaneously and synchronously execute each of

its Sense, Process, and Act. In the semi-synchronous (Ssync, also called Sym or

Atom) [99] setting, not all robots are active in every cycle, but all of those who start

a certain cycle synchronously execute each of its Sense, Process, and Act. Fig. 4.3

compares the three models of execution of the Sense-Process-Act cycles.

Definition (Uniformly-circular Configuration) A configuration Ct is said to be uniformly-

54 4.3. A Fully-Distributed Approach

circular if there exists a regular n-gon Pn such that each pt
i (1 ≤ i ≤ n) equals the

position of one of Pn’s vertex.

4.2.2 Problem Definition

With the definitions given in the Section 4.2.1, we now formally define the problem

of uniform circle formation to be solved in this paper as follows.

Definition Uniform Circle Formation: Given a set of n robots R = {r1, r2, · · · , rn}

initially under a collision-free and connected configuration, arrange them under a

collision-free and uniformly-circular configuration through a sequence of collision-

free configurations.

4.3 A Fully-Distributed Approach

In this section, we propose a fully-distributed approach to solving the uniform circle

formation problem stated in Section 4.2.2. In Section 4.3.1, a general framework of

the algorithm is introduced. Then detailed steps are discussed from Section 4.3.2 to

Section 4.3.7.

4.3.1 Algorithm Framework

When the system is just starting up, the robots are not aware of their neighbors. A

robot network should be built up to enable the communication between the robots.

This step is called network construction. In Section 4.3.2, a network construction

algorithm is proposed to construct neighbor lists for the robots. Note that this step

is critical since the topology of the network remarkably affects the number and size

of messages passing among the robots.

4.3. A Fully-Distributed Approach 55

After the network construction, the robots can communicate with their neigh-

bors. Since the circle to be formed is not given in advance, the robots should negoti-

ate with each other to make a consensus on a common uniform circle to form. Two

parameters, the radius, and the center are necessary to determine a uniform circle.

On the one hand, to make a consensus on the center, we propose a distributed

convex hull construction algorithm in Section 4.3.3. After execution of the algo-

rithm, each robot will be aware of the convex hull of all robots. Then each robot

makes the average of the positions of all robots as the center.

On the other hand, to reach consensus on the radius, a distributed cardinality

estimation algorithm is proposed in Section 4.3.4. In the MRS, no robot is aware of

the total number of robots. Also, to count the exact number of entities inside a dis-

tributed system is computationally expensive. Therefore, our method is to estimate

the approximate number of robots in the system. Note that the estimation is cru-

cial since overestimation leads to unconnected configuration while underestimation

results in insufficient space to place all robots.

Definition (Circular Configuration) A configuration Ct is said to be circular on

center point O and radius r if the distances between each pt
i (1 ≤ i ≤ n) and O are

equal to r. Furthermore, a configuration Ct is said to be C-circular if C is a circle

and Ct is circular on the center and radius of C.

Definition Circle Formation: Given a circle C and a set of n robotsR = {r1, r2, · · · , rn}

initially under collision-free and connected configuration, arrange them under a

collision-free, connected and C-circular configuration through a sequence of collision-

free configurations.

Definition Uniform Transformation: Given a set of n robotsR = {r1, r2, · · · , rn} ini-

tially under a collision-free, connected and C-circular configuration, arrange them

56 4.3. A Fully-Distributed Approach

under a collision-free and uniformly-circular configuration through a sequence of

collision-free configurations.

After reaching a consensus on the common circle, we decompose the uniform

circle formation problem into two sub-problems, namely circle formation and uni-

form transformation seen above. Informally speaking, the two steps are to form a

circle first and then to transform into a uniform circle. Here, we assume for sim-

plification that all robots will not isolate themselves from the system during the

movements of the whole system.

4.3.2 Network Construction

In this section, each robot constructs a local communication network with identifiers

by running Algorithm 1. Initially, each robot ri broadcasts a message containing its

identifier and its position pi to the neighboring robots within Rc. Upon receiving

a piece of message Msg j = {r j, p j}, robot ri will testify whether there is any other

robot within the circle whose diameter is the segment with ending points pi and p j.

If there is no other robot in between, ri will add r j into its neighboring list Ni.

By running Algorithm 1, each robot ri can construct a new local communication

network Ni, which is also called the 1-hop neighbors of robot ri. Compared to

the original network which is a circle with radius Rc, the number of messages can

be remarkably reduced by running the algorithm of convex hull construction and

cardinality estimation. It is obvious that all the communication routes in the whole

network are bi-directional.

To demonstrate the advantages of utilizing our algorithm of network construc-

tion, we compare it with the original network by running the convex hull construc-

tion algorithm. We run the distributed convex hull construction algorithm in our

network and the original network in an MRS with 3 to 1000 robots and 10 different

4.3. A Fully-Distributed Approach 57

Algorithm 1 Network construction for each robot ri

Input: ri: robot identifier; Ra: active range; S relative
i : the relative positions of the

robots within Rs

Output: Ni: neighbor list of robot ri

Begin:

1: Ni ← ∅ ▷ Initialize the neighbor list as an empty set

2: S absolute
i ← S relative

i + (xi, yi)

3: Broadcast the message containing the identifier and the position Msgi = {ri, pi}

to its neighbors

4: while Receive a message Msg j = {r j, p j} from a neighboring robot do

5: di j ← distance(pi, p j) ▷Measure the distance between ri and r j

6: if di j < Ra then

7: circlei j← a circle with midpoint of ri and r j as the center, and di j as the

diameter

8: if No points in S absolute
i are inside circlei j then

9: Ni ← Ni ∪ {r j}

10: end if

11: end if

12: end while

13: return Ni

End

initial configurations for each number of robots. Then, we calculate the average

number of messages needed in our network and the original network. Fig. 4.4(a)

shows the results, in which UDG (unit disk graph) means the original network while

DT (Delaunay triangulation) means our network. It is oblivious that our network

can significantly reduce the number of messages.

58 4.3. A Fully-Distributed Approach

4.3.3 Convex Hull Construction

In this section, we propose a distributed convex hull construction algorithm (seen

in Algorithm 2) to make all of the robots aware of the convex hull of all robots.

In the algorithm, each robot ri maintains a local convex hull convi. When the

algorithm is starting up, the primary convex hull for each robot ri only contains the

position pi itself. Then, each robot ri exchanges its local convex hull with all of

its 1-hop neighbors. Upon receiving a convex hull from another robot, the robot

locally runs Graham’s scan [42] to merge its local convex hull with the received

one. The resulting convex hull is saved as the new local convex hull. Each robot

continues this procedure until the local convex hulls in two successive rounds are

identical.

Algorithm 2 Distributed convex hull Construction for each robot ri

Input: Ni: One hop neighbor list; pi: position; ri: robot identifier

Output: convi: the convex hull of the MRS

Begin:

1: if not initialized then

2: convi ← {(ri, pi)} ▷ Each robot maintain a local convex hull as convi.

Initially, the convex hull of each robot is only the position of itself.

3: conv′i ← convi

4: Fin← ∅ ▷ Fin records the robots whose messages have been handled in

current round.

5: for each rk ∈ Ni do

6: msglist(rk)← an empty message queue

7: end for

8: Broadcast Msgi = {ri, convi} to its neighbors

9: end if

4.3. A Fully-Distributed Approach 59

10: if receive message Msg j = {r j, conv j} then

11: if r j ∈ Fin then

12: msglist(r j).push(conv j)

13: else

14: conv′i ← merge(conv′i , conv j) ▷Merge two convex hulls by running

Graham’s scan algorithm locally

15: Fin← Fin ∪ {r j}

16: if |Fin| = |Ni| then

17: if conv′i = convi then

18: return convi

19: end if

20: convi ← conv′i

21: broadcast convi to ri’s neighbors

22: Fin← ∅

23: for each rk ∈ Ni do

24: convk ← msglist(rk).pop()

25: conv′i ← merge(convi, convk)

26: Fin← Fin ∪ {rk}

27: end for

28: end if

29: end if

30: end if

End

Another straightforward algorithm to make all robots aware of the common

convex hull is that each robot sends all of its neighbors to its 1-hop neighbors re-

peatedly. In this algorithm, every robot can know all the robots in the system finally

60 4.3. A Fully-Distributed Approach

(a) Average number of messages (b) Average size of messages

Figure 4.4 Analysis on number of message and size of messages

and can compute the convex hull. To evaluate our distributed convex hull con-

struction algorithm, we compare it with the straightforward algorithm. We run the

distributed convex hull construction algorithm and straightforward algorithm in DT

network and UDG network in an MRS with 3 to 1000 robots and 10 different initial

configurations for each number of robots. Then, we calculate the average number

of messages as well as the average size of messages needed. Fig. 4.4 shows the

results, in which AR means the straightforward algorithm while CV means our algo-

rithm. According to the figure, we can see that the number and size of messages

can be significantly reduced by using our convex hull construction algorithm.

4.3.4 Distributed Cardinality Estimation

In this section, we propose Algorithm 3 to estimate the number of robots in the

whole system. Algorithm 3 is adapted from Algorithm 2 by modifying the content

of messages and adjusting the updating rule upon receiving messages. After the

execution of Algorithm 3, all robots will have a common sense on xi
a for all a ∈

[1, k]. These parameters will be used for estimating the total number of robots in

4.3. A Fully-Distributed Approach 61

Section 4.3.5.

Algorithm 3 Distributed cardinality estimation for each robot ri

Input: Ni: One hop neighbor list; l: an integer parameter; k: another integer pa-

rameter

Output: n̂i: the estimation of total number of robots

Begin:

1: for a← 1 to k do

2: xi
a ← a variable of l bits with all bits to be 0

3: rand← a random 0/1 string of l − 1 bits

4: y← the number of leading continuous ’0’s in rand from left hand

5: Set xi
a’s y + 1 bit to be 1

6: x′ia ← xi
a

7: end for

8: In Algorithm 2, incorporate {xi
1, · · · , x

i
k} into message Msgi. The updating rule

of xi
a is xi

a ← (xi
a | x

j
a) when receiving Msg j. Finally, when returning convi, also

returns xi
a for all a ∈ [1, k]

End

The general idea of Algorithm 3 is that each robot selects one of l slots to be

placed and finally makes a consensus on all the occupied slots. This procedure is

repeated k times. In the algorithm, l and k are parameters which can be used to

achieve different accuracy requirements. The details will be discussed in Section

4.3.5.

4.3.5 Consensus on Circle

In this section, each robot determines the radius and the center of the circle to form.

To determine the center, we use the resulting convex hull from Section 4.3.3. To

62 4.3. A Fully-Distributed Approach

determine the radius, we consider two methods. In the first method, we calculate

the area of the convex hull and divide the area of the convex hull by the area of one

robot to get the maximum number of robots in the area. In the second method, we

estimate the number of robots using the results from Section 4.3.4. Then, we take

the minimum value of the results from the two methods as the estimated number of

robots in the system. In this way, each root can have very high possibility to find a

place on the circle boundary. The performance of the algorithm will be evaluated

afterward.

RREC

R

r1

r2

r3

rn

rn-1

Figure 4.5 Caclulating the radius of the common circle using the estimation of the num-

ber of robots.

After estimating the number of robots, each robot can calculate the radius of the

common circle as shown in Fig. 4.5. The exact algorithm is shown in Algorithm 4.

In [83], the authors give a local cardinality estimator using the theorem proved

4.3. A Fully-Distributed Approach 63

Algorithm 4 Determination of the center and radius of the circle to be formed for

each robot ri

Input: xi
a: parameters for cardinality estimation generated in Algorithm 3; k: pa-

rameter used in Algorithm 3; convi: convex hull generated in Algorithm 2

Output: Oi: the center of the circle; RCIR
i : the radius of the circle

Begin:

1: for a← 1 to k do

2: yi
a ← the number of leading continuous ’1’s in xi

a

3: end for

4: y← Σk
a=1yi

a

5: p̂i ← 1.2897 × 2
y
k ▷ The result of distributed cardinality estimation

6: Oi ←
1

|convi |
Σ
|convi |

j=1 convi.p j ▷ The center of the target circle

7: areai ← area of convi ▷ Area of the convex hull

8: q̂i ← γ
areai
πR2 ▷ The convex hull contains at most areai

πR2 robots. We multiply it by a

parameter γ ∈ [1, 2] without loss of generality.

9: n̂i ← min(p̂i, q̂i)

10: RCIR
i ← R/ sin πn̂i

11: return {Oi, RCIR
i }

End

in [35] as follows:

y = Σk
a=1yi

a

p̂i = 1.2897 × 2
y
k

The performance of the estimator can be guranteed by satisfying accuracy require-

ment. The accuracy requirement is said to be satisfied if Pr[|n̂ − n| ≤ βn] ≥ 1 − α,

in which α is the error probability and β is the confidence interval (also called error

bound). Adapting the theorem in [35] to our context, we get the constraints for k to

64 4.3. A Fully-Distributed Approach

guarantee the performance:

Theorem 4.3.1 Given the error probability α and confidence interval β, the accu-

racy requirement is satisfied if k ≥ max{[−σ∞c
log2(1−β)]

2, [σ∞c
log2(1+β)]

2}, where c is obtained

by solving 1 − α = er f (c
√

2
), er f is the Gaussian error function.

4.3.6 Circle Formation

After the previous steps, all the robots have made a consensus on a common circle

to form. Let O be the center of the circle, RCIR be the radius of the circle and CIR

be the common circle. In this section, Algorithm 5 is proposed to solve the circle

formation problem.

Figure 4.6 Move to the boundary of the circle

4.3. A Fully-Distributed Approach 65

Algorithm 5 Circle Formation for each robot ri

Input: O: the center of the circle; RCIR: the radius of the circle; ri: robot identifier;

α: speed control parameter

Output: All robots are located on the boundrary of a circle

Begin:

1: Cir← the boundary of a circle with O as the center and RREC as radius

2: Rayi ← the radial from O to pi

3: Di ← the intersection point of Oi and Rayi

4: while ri does not reach Cir do

5: if There is no other robot along Rayi then

6: Move along Rayi to Di

7: else

8: Di+1 ← the next robot position clockwise adjacent to Di on the Cir

9: Rayi+1 ← the ray from O to Di+1

10: if There is no other robots along the shortest way from pi to Rayi+1 then

11: Move along the shortest way from pi to Di+1

12: else

13: Wait in this round

14: end if

15: end if

16: end while

End

At the beginning, each robot ri calculates the point Di as the intersection point of

the circle CIR and the ray Rayi from O to pi. And Di serves as the target position of

robot ri. While robot ri moves to Di, it detects whether there is any other robot ahead

along Rayi. If so, it changes its target to the next position Di+1 that is clockwise

66 4.3. A Fully-Distributed Approach

available for a robot on the circle. Fig. 4.6 shows an example of Algorithm 5, in

which solid arrows are the planned routes of the robots. Since there are enough

spaces to place all the robots on the circle, there must be an available position for

each robot.

4.3.7 Uniform Transformation

After circle formation, the robots are going to do uniform transformation as stated

in Section 4.2.2. First, the robots can be aware of the total number of robots by

clockwise passing information in a straightforward way. Then, each robot calcu-

lates the desired final robot inter-distance, namely d, on the uniform circle. For

robot r, r+ is notated as the clockwise neighboring robot on the circle. We adapt the

algorithm in [36] to Algorithm 6 to solve the uniform transformation problem.

Algorithm 6 Uniform transformation for each robot ri

Input:d: the desired final robot inter-distance; p+: the position of ri’s successor;

CIR: the circle to form

Output: All robots are uniformly located along a circle

Begin:

1: d+ ← distance(pi, p+)

2: if d+ > d then

3: Move toward the point p on the circle CIR at distance d from p+, remaining

on the circle CIR during the movement.

4: end if

End

4.4. Experimental Results 67

4.4 Experimental Results

To demonstrate the usefulness and evaluate the performance of our solution pro-

posed in Section 4.3, we deploy a realistic test-bed. Our realistic test-bed, as shown

in Fig. 4.7, is composed of three components, which are a localization system,

multiple (currently 8) intelligent robots and a programming environment.

Figure 4.7 The robots and the beacons

The localization system consists of two anchor beacons, which are used for

robotic localization. Each anchor beacon is composed of a 2.4G wireless com-

munication module, an STM32 Microcontroller(MCU), an ultrasonic transmitter, a

temperature sensor, and a battery. In the procedure of localization, the 2.4G wireless

communication module and the ultrasonic transmitter will send signals simultane-

ously. Due to the different propagation velocities of the 2.4G wireless signal and

the ultrasonic signal, each robot receives the two signals at different moments. As

a result, each robot can calculate the distance between itself and the beacon using

the principle of TDOA (time difference of arrival). After calculating the distance

between the robot itself and the two anchor beacons, the robot can calculate its

location on the planar platform. Since the velocity of the ultrasonic signal varies

under different temperatures, we add a temperature sensor to achieve a more precise

68 4.4. Experimental Results

localization.

Left Motor
Driver

MCU

Magnetic Sensor
Accelerometer Sensor

Gyroscope Sensor
Ultrasonic Sensor

Wireless Communication Unit

Left
Wheel

Right Motor
Driver

Right
Wheel

Infra-red Sensors

MCU

Bus Power Management Unit

Top Board

Bottom Board

Figure 4.8 Structure Diagram of a Robot

The robots, namely PiBots (The Hong Kong Polytechnic University Intelligent

Robot), are the 2nd version of our design (version 1 is presented in [51]) in our

laboratory. All the robots are in the same shape and with the same size, which is

approximately a cylinder with 7cm radius and 18cm height. The struct diagram of

the robot is shown in Fig. 4.8. Each robot is composed of two boards, the upper

board and bottom board, which are powered by the power management unit. In both

of the boards, there is an MCU which is responsible for data storage and processing.

Inside the MCUs, data can be stored in either 8Mbit static random access memory

(SRAM) or 512Kbit flash memory. The two boards are connected by a SPI (Serial

4.4. Experimental Results 69

Peripheral Interface) bus to achieve data transmission.

The bottom board includes two motor drivers, eight infra-red sensors, a mo-

tor feedback signal processor and an STM32 MCU. The motor drivers can control

the wheels with given speeds separately and the motor feedback signal processor

can get the current speeds of the wheels. The eight infra-red sensors can detect

whether there are obstacles or not in eight directions. The upper board includes an

STM32 MCU, three controlled buttons, a 2.4G wireless communication unit, a 2K

EEPROM, an ultrasonic receiver, a 3-axis accelerator sensor, a 3-axis gyroscope,

a 3-axis geomagnetic sensor, etc. The wireless communication unit, which uses

IEEE 802.15.4 as its protocol, enables communication between robots. Other func-

tionalities achieved by the bottom board includes localization, direction awareness,

etc.

The programming environment is based on FreeRTOS, a popular real-time oper-

ating system kernel for embedded devices. In FreeRTOS, programmers can define

a set of tasks (similar to threads in operating systems) with priorities to be executed

concurrently. For example, in our implementation of uniform circle formation, a

task to control motors, a task for communication, and a task for the purpose of user-

defined application are used. Then, in every time unit, the tasks will be executed

one by one according to the pre-defined priorities. Also, to simply the programming

task, we utilize the programming model proposed in [49]. Finally, we deploy our

algorithm for uniform circle formation in our test-bed with parameters l = 10, k = 4

and γ = 1.2. The running examples are shown in Fig. 4.1, in which scenarios with

different numbers of robots and different initial configurations are considered. The

results demonstrate the effectiveness and practicability of our algorithm.

70 4.5. RelatedWorks

4.5 Related Works

The circle formation problem was first discussed and further improved by Sugihara

and Suzuki [98]. Their approach is based on heuristics and works in Ssync for the

formation of an approximate circle instead of a perfect one. Later on, researchers

cast light on a particular case of circle formation called uniform circle formation in

which the robots must be arranged at regular intervals on the boundary of a circle.

A remarkable progress is attained by Defago and Konagaya [27]. They proposed a

protocol in the Ssync model and formally prove their approach to converge toward

a uniform circle. With respect to Async model, Flocchini et al. [37] addressed the

uniform circle formation problem by moving to smallest enclosing circle (Sec) and

avoiding pre-regular circumstance.

However, all the above algorithms are based on the assumptions of unlimited

visibility and the punctiform hypothesis. With unlimited visibility, each robot is

aware of the positions of all robots. However, robots can only sense their surround-

ings within a certain range in reality. With limited visibility, a robot might not

even know the total number of robots. Also, assuming unlimited visibility makes

this procedure unscalable and computationally expensive, since each robot has to

process the information of all robots. On the other hand, robots are represented

as points under the punctiform hypothesis. These assumptions greatly simplify the

problem of uniform circle formation by avoiding the details of the formation of a

consensus of the circle size, collision avoidance, etc.

The circumstance of limited visibility is understandably challenging. To our

knowledge, only a small number of algorithmic results are known under the limited

visibility scenario, even in problems other than uniform circle formation. Multi-

robot gathering with limited visibility is well discussed and investigated [39][57].

On uniform circle formation, known results are conducted by Dutta et al. [32] and

4.6. Conclusion 71

Datta et al. [24]. However, both of them assume for convenience that the circle to

form is given in advance. In reality, consensus on the circle is not trivial at all.

The boundary is a “tightly” wrapped contour around the configuration of robots.

In this paper, we incorporate the convex hull for boundary detection. In computa-

tional geometry, the algorithm of Graham’s scan [42] is well-known to compute the

convex hull of a set of points in the two-dimensional space. The algorithm of Gra-

ham’s scan requires the computation to be performed in a central computer, which

does not meet our requirement that the robots form a distributed system and are

with limited visibility. To our knowledge, only few algorithms [102][65][45] are

known for distributed boundary detection. However, these algorithms only make

each robot aware of whether or not it is on the boundary. Each robot is not aware

of all the robots on the boundary.

Cardinality estimation, i.e., counting the approximate number of tags in a given

region is widely discussed in RFID systems [54][58]. However, in existing works,

only the central computation station, i.e., the RFID readers, are aware of the estima-

tion result. To our knowledge, the problem of cardinality estimation has not been

discussed yet in fully-distributed systems.

4.6 Conclusion

The problem of uniform circle formation is one of the important coordination prob-

lems in multi-robot systems. The question of whether robots with actual size

and limited sensing and communication range could form a uniform circle, to our

knowledge, has remained open. In this paper, we formulate the uniform circle

formation problem in a distributed multi-robot system and propose a three-phase

approach, namely consensus on circle, circle formation and uniform transformation

towards solving it. Inside our approach, we propose several new algorithms, i.e.,

72 4.6. Conclusion

distributed convex hull construction and distributed cardinality estimation, which

can be used in general distributed systems. After designing our distributed algo-

rithm, we deploy it in our realistic test-bed and have done solid experiments. The

results imply the effectiveness and practicability of our algorithms.

Bibliography

[1] Dimitris Alimisis. Educational robotics: Open questions and new challenges.

Themes in Science and Technology Education, 6(1):63–71, 2013.

[2] Tamio Arai, Enrico Pagello, and Lynne E Parker. Editorial: Advances

in multi-robot systems. IEEE Transactions on robotics and automation,

18(5):655–661, 2002.

[3] DJ Arbuckle and Aristides AG Requicha. Self-assembly and self-repair of

arbitrary shapes by a swarm of reactive robots: algorithms and simulations.

Autonomous Robots, 28(2):197–211, 2010.

[4] Michael P Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C

Mowry, and Padmanabhan Pillai. Meld: A declarative approach to pro-

gramming ensembles. In Intelligent Robots and Systems, 2007. IROS 2007.

IEEE/RSJ International Conference on, pages 2794–2800. IEEE, 2007.

[5] Michael P Ashley-Rollman, Peter Lee, Seth Copen Goldstein, Padmanabhan

Pillai, and Jason D Campbell. A language for large ensembles of indepen-

dently executing nodes. In Logic Programming, pages 265–280. Springer,

2009.

[6] Jonathan Bachrach and Jacob Beal. Programming a sensor network as an

amorphous medium. 2006.

[7] Jonathan Bachrach, James McLurkin, and Anthony Grue. Protoswarm:

73

74 BIBLIOGRAPHY

a language for programming multi-robot systems using the amorphous

medium abstraction. In Proceedings of the 7th international joint conference

on Autonomous agents and multiagent systems-Volume 3, pages 1175–1178.

International Foundation for Autonomous Agents and Multiagent Systems,

2008.

[8] Richard Barry. FreeRTOS reference manual: API functions and configura-

tion options. Real Time Engineers Limited, 2009.

[9] Jacob Beal and Jonathan Bachrach. Infrastructure for engineered emergence

on sensor/actuator networks. Intelligent Systems, IEEE, 21(2):10–19, 2006.

[10] Ryan A Beasley. Medical robots: current systems and research directions.

Journal of Robotics, 2012, 2012.

[11] Fabiane Barreto Vavassori Benitti. Exploring the educational potential

of robotics in schools: A systematic review. Computers & Education,

58(3):978–988, 2012.

[12] Elizabeth Broadbent, Rebecca Stafford, and Bruce MacDonald. Acceptance

of healthcare robots for the older population: review and future directions.

International Journal of Social Robotics, 1(4):319–330, 2009.

[13] James Bruce, Stefan Zickler, Mike Licitra, and Manuela Veloso. Cmdragons:

Dynamic passing and strategy on a champion robot soccer team. In Robotics

and Automation, 2008. ICRA 2008. IEEE International Conference on, pages

4074–4079. IEEE, 2008.

[14] Wolfram Burgard, Mark Moors, Dieter Fox, Reid Simmons, and Sebastian

Thrun. Collaborative multi-robot exploration. In Robotics and Automation,

2000. Proceedings. ICRA’00. IEEE International Conference on, volume 1,

pages 476–481. IEEE, 2000.

[15] Jessica Burgner-Kahrs, D Caleb Rucker, and Howie Choset. Continuum

BIBLIOGRAPHY 75

robots for medical applications: A survey. IEEE Transactions on Robotics,

31(6):1261–1280, 2015.

[16] William Joseph Butera. Programming a paintable computer. PhD thesis,

Citeseer, 2002.

[17] Stephan K Chalup, Craig L Murch, and Michael J Quinlan. Machine learn-

ing with aibo robots in the four-legged league of robocup. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

37(3):297–310, 2007.

[18] Ioannis Chatzigiannakis, Michael Markou, and Sotiris Nikoletseas. Dis-

tributed circle formation for anonymous oblivious robots. In Interna-

tional Workshop on Experimental and Efficient Algorithms, pages 159–174.

Springer, 2004.

[19] David Chu, Arsalan Tavakoli, Lucian Popa, and Joseph Hellerstein. Entirely

declarative sensor network systems. In Proceedings of the 32nd international

conference on Very large data bases, pages 1203–1206. VLDB Endowment,

2006.

[20] Christopher M Cianci, Xavier Raemy, Jim Pugh, and Alcherio Martinoli.

Communication in a swarm of miniature robots: The e-puck as an edu-

cational tool for swarm robotics. In International Workshop on Swarm

Robotics, pages 103–115. Springer, 2006.

[21] William Cook and Andre Rohe. Computing minimum-weight perfect match-

ings. INFORMS Journal on Computing, 11(2):138–148, 1999.

[22] Flavio Cruz12, Ricardo Rocha, and Seth Copen Goldstein. A parallel virtual

machine for executing forward-chaining linear logic programs. In Work-

shop on Implementation of Constraint and Logic Programming Systems and

Logic-based Methods in Programming Environments 2014, page 125.

76 BIBLIOGRAPHY

[23] Leonardo Dagum and Rameshm Enon. Openmp: an industry standard api

for shared-memory programming. Computational Science & Engineering,

IEEE, 5(1):46–55, 1998.

[24] Suparno Datta, Ayan Dutta, Sruti Gan Chaudhuri, and Krishnendu

Mukhopadhyaya. Circle formation by asynchronous transparent fat robots.

In International Conference on Distributed Computing and Internet Technol-

ogy, pages 195–207. Springer, 2013.

[25] Michael De Rosa, Seth Goldstein, Peter Lee, Jason Campbell, and Padman-

abhan Pillai. Scalable shape sculpting via hole motion: Motion planning in

lattice-constrained modular robots. In Proceedings 2006 IEEE International

Conference on Robotics and Automation, 2006. ICRA 2006., pages 1462–

1468. IEEE, 2006.

[26] Michael De Rosa, Seth Goldstein, Peter Lee, Padmanabhan Pillai, and Jason

Campbell. Programming modular robots with locally distributed predicates.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Confer-

ence on, pages 3156–3162. IEEE, 2008.

[27] Xavier Défago and Akihiko Konagaya. Circle formation for oblivious anony-

mous mobile robots with no common sense of orientation. In Proceedings of

the second ACM international workshop on Principles of mobile computing,

pages 97–104. ACM, 2002.

[28] Dominique Dhoutaut, Benoît Piranda, and Julien Bourgeois. Efficient sim-

ulation of distributed sensing and control environments. In Green Comput-

ing and Communications (GreenCom), 2013 IEEE and Internet of Things

(iThings/CPSCom), IEEE International Conference on and IEEE Cyber,

Physical and Social Computing, pages 452–459. IEEE, 2013.

[29] Ezequiel Di Mario and Alcherio Martinoli. Distributed particle swarm opti-

BIBLIOGRAPHY 77

mization for limited-time adaptation with real robots. Robotica, 32(02):193–

208, 2014.

[30] Yoann Dieudonné, Ouiddad Labbani-Igbida, and Franck Petit. Circle forma-

tion of weak mobile robots. ACM Transactions on Autonomous and Adaptive

Systems (TAAS), 3(4):16, 2008.

[31] Yoann Dieudonné and Franck Petit. Squaring the circle with weak mobile

robots. In International Symposium on Algorithms and Computation, pages

354–365. Springer, 2008.

[32] Ayan Dutta, Sruti Gan Chaudhuri, Suparno Datta, and Krishnendu

Mukhopadhyaya. Circle formation by asynchronous fat robots with lim-

ited visibility. In International Conference on Distributed Computing and

Internet Technology, pages 83–93. Springer, 2012.

[33] Joseph F Engelberger. Robotics in practice: management and applications

of industrial robots. Springer Science & Business Media, 2012.

[34] Alessandro Farinelli, Luca Iocchi, and Daniele Nardi. Multirobot systems: a

classification focused on coordination. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 34(5):2015–2028, 2004.

[35] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for

data base applications. Journal of computer and system sciences, 31(2):182–

209, 1985.

[36] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Self-deployment

algorithms for mobile sensors on a ring. In International Symposium on Al-

gorithms and Experiments for Sensor Systems, Wireless Networks and Dis-

tributed Robotics, pages 59–70. Springer, 2006.

[37] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta.

Distributed computing by mobile robots: uniform circle formation. Dis-

78 BIBLIOGRAPHY

tributed Computing, pages 1–45, 2014.

[38] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer.

Hard tasks for weak robots: The role of common knowledge in pattern

formation by autonomous mobile robots. In Algorithms and Computation,

10th International Symposium, ISAAC’99, Chennai, India, December 16-18,

1999, Proceedings, pages 93–102, 1999.

[39] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer.

Gathering of asynchronous robots with limited visibility. Theoretical Com-

puter Science, 337(1-3):147–168, 2005.

[40] Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masa-

fumi Yamashita. Pattern formation by oblivious asynchronous mobile robots.

SIAM Journal on Computing, 44(3):740–785, 2015.

[41] David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jerome Mon-

ceaux, Pascal Lafourcade, Brice Marnier, Julien Serre, and Bruno Maison-

nier. The nao humanoid: a combination of performance and affordability.

CoRR abs/0807.3223, 2008.

[42] Ronald L. Graham. An efficient algorith for determining the convex hull of

a finite planar set. Information processing letters, 1(4):132–133, 1972.

[43] Luigi Alfredo Grieco, Alessandro Rizzo, S Colucci, Sabrina Sicari, Giuseppe

Piro, Donato Di Paola, and Gennaro Boggia. Iot-aided robotics applications:

Technological implications, target domains and open issues. Computer Com-

munications, 54:32–47, 2014.

[44] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan.

Macro-programming wireless sensor networks using kairos. In International

Conference on Distributed Computing in Sensor Systems, pages 126–140.

Springer, 2005.

BIBLIOGRAPHY 79

[45] Peng Guo, Jiannong Cao, and Kui Zhang. Distributed topological convex

hull estimation of event region in wireless sensor networks without loca-

tion information. IEEE transactions on parallel and distributed systems,

26(1):85–94, 2015.

[46] Golnaz Habibi, William Xie, Mathew Jellins, and James McLurkin. Dis-

tributed path planning for collective transport using homogeneous multi-

robot systems. In Distributed Autonomous Robotic Systems, pages 151–164.

Springer, 2016.

[47] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister. System architecture directions for networked sensors. In

ACM SIGOPS operating systems review, volume 34, pages 93–104. ACM,

2000.

[48] Andrew Howard, Lynne E Parker, and Gaurav S Sukhatme. Experiments

with a large heterogeneous mobile robot team: Exploration, mapping, de-

ployment and detection. The International Journal of Robotics Research,

25(5-6):431–447, 2006.

[49] Shan Jiang, Jiannong Cao, Yang Liu, Jinlin Chen, and Xuefeng Liu. Pro-

gramming large-scale multi-robot system with timing constraints. In Com-

puter Communication and Networks (ICCCN), 2016 25th International Con-

ference on, pages 1–9. IEEE, 2016.

[50] Shan Jiang, Jiannong Cao, Jia Wang, Milos Stojmenovic, and Julien Bour-

geois. Uniform circle formation by asynchronous robots: A fully-distributed

approach. In 2017 26th International Conference on Computer Communica-

tion and Networks (ICCCN), pages 1–9. IEEE, 2017.

[51] Shan Jiang, Junbin Liang, Jiannong Cao, and Rui Liu. An ensemble-level

programming model with real-time support for multi-robot systems. In 2016

80 BIBLIOGRAPHY

IEEE International Conference on Pervasive Computing and Communica-

tion Workshops (PerCom Workshops), pages 1–3. IEEE, 2016.

[52] Serge Kernbach, Ronald Thenius, Olga Kernbach, and Thomas Schmickl.

Re-embodiment of honeybee aggregation behavior in an artificial micro-

robotic system. Adaptive Behavior, 17(3):237–259, 2009.

[53] Sangbae Kim, Cecilia Laschi, and Barry Trimmer. Soft robotics: a bioin-

spired evolution in robotics. Trends in biotechnology, 31(5):287–294, 2013.

[54] Murali Kodialam and Thyaga Nandagopal. Fast and reliable estimation

schemes in rfid systems. In Proceedings of the 12th annual international con-

ference on Mobile computing and networking, pages 322–333. ACM, 2006.

[55] Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh Govin-

dan. Reliable and efficient programming abstractions for wireless sensor net-

works. In ACM SIGPLAN Notices, volume 42, pages 200–210. ACM, 2007.

[56] Pedro U Lima and Luis M Custodio. Multi-robot systems. In Innovations in

robot mobility and control, pages 1–64. Springer, 2005.

[57] Jie Lin, A Stephen Morse, and Brian DO Anderson. The multi-agent ren-

dezvous problem. part 2: The asynchronous case. SIAM Journal on Control

and Optimization, 46(6):2120–2147, 2007.

[58] Xiulong Liu, Keqiu Li, Jie Wu, Alex X Liu, Xin Xie, Chunsheng Zhu, and

Weilian Xue. Top-k queries for multi-category rfid systems. In Computer

Communications, IEEE INFOCOM 2016-The 35th Annual IEEE Interna-

tional Conference on, pages 1–9. IEEE, 2016.

[59] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E Gay, Joseph M

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and

Ion Stoica. Declarative networking: language, execution and optimization.

In Proceedings of the 2006 ACM SIGMOD international conference on Man-

BIBLIOGRAPHY 81

agement of data, pages 97–108. ACM, 2006.

[60] Yuri K Lopes, André B Leal, Tony J Dodd, and Roderich Groß. Applica-

tion of supervisory control theory to swarms of e-puck and kilobot robots.

In International Conference on Swarm Intelligence, pages 62–73. Springer,

2014.

[61] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara. Provably-good dis-

tributed algorithm for constrained multi-robot task assignment for grouped

tasks. Robotics, IEEE Transactions on, 31(1):19–30, 2015.

[62] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong.

Tinydb: an acquisitional query processing system for sensor networks. ACM

Transactions on database systems (TODS), 30(1):122–173, 2005.

[63] Norman Margolus. Cam-8: a computer architecture based on cellular au-

tomata. Pattern Formation and Lattice-Gas Automata, pages 167–187, 1996.

[64] Maja J Mataric. Interaction and intelligent behavior. Technical report, DTIC

Document, 1994.

[65] James McLurkin and Erik D Demaine. A distributed boundary detection

algorithm for multi-robot systems. In Intelligent Robots and Systems, 2009.

IROS 2009. IEEE/RSJ International Conference on, pages 4791–4798. IEEE,

2009.

[66] James McLurkin, Andrew J Lynch, Scott Rixner, Thomas W Barr, Alvin

Chou, Kathleen Foster, and Siegfried Bilstein. A low-cost multi-robot system

for research, teaching, and outreach. In Distributed Autonomous Robotic

Systems, pages 597–609. Springer, 2013.

[67] James McLurkin, Adam McMullen, Nick Robbins, Golnaz Habibi, Aaron

Becker, Alvin Chou, Hao Li, Meagan John, Nnena Okeke, Joshua Rykowski,

et al. A robot system design for low-cost multi-robot manipulation. In 2014

82 BIBLIOGRAPHY

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

912–918. IEEE, 2014.

[68] James McLurkin, Joshua Rykowski, Meagan John, Quillan Kaseman, and

Andrew J Lynch. Using multi-robot systems for engineering education:

Teaching and outreach with large numbers of an advanced, low-cost robot.

IEEE transactions on education, 56(1):24–33, 2013.

[69] James McLurkin and Jennifer Smith. Distributed algorithms for dispersion

in indoor environments using a swarm of autonomous mobile robots. In in

7th International Symposium on Distributed Autonomous Robotic Systems

(DARS. Citeseer, 2004.

[70] James McLurkin, Jennifer Smith, James Frankel, David Sotkowitz, David

Blau, and Brian Schmidt. Speaking swarmish: Human-robot interface design

for large swarms of autonomous mobile robots. In AAAI Spring Symposium:

To Boldly Go Where No Human-Robot Team Has Gone Before, pages 72–75,

2006.

[71] Nathan Michael, Jonathan Fink, and Vijay Kumar. Experimental testbed for

large multirobot teams. IEEE robotics& automation magazine, 15(1):53–61,

2008.

[72] Nelson Minar, Roger Burkhart, Chris Langton, Manor Askenazi, et al. The

swarm simulation system: A toolkit for building multi-agent simulations.

Santa Fe Institute Santa Fe, 1996.

[73] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christo-

pher Cianci, Adam Klaptocz, Stephane Magnenat, Jean-Christophe Zufferey,

Dario Floreano, and Alcherio Martinoli. The e-puck, a robot designed for ed-

ucation in engineering. In Proceedings of the 9th conference on autonomous

robot systems and competitions, volume 1, pages 59–65. IPCB: Instituto

BIBLIOGRAPHY 83

Politécnico de Castelo Branco, 2009.

[74] Francesco Mondada, Edoardo Franzi, and Andre Guignard. The develop-

ment of khepera. In Experiments with the Mini-Robot Khepera, Proceedings

of the First International Khepera Workshop, number LSRO-CONF-2006-

060, pages 7–14, 1999.

[75] Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macropro-

gramming system. In Proceedings of the 6th international conference on

Information processing in sensor networks, pages 489–498. ACM, 2007.

[76] Ulf Nilsson and Jan Małuszyński. Logic, programming and Prolog. Wiley

Chichester, 1990.

[77] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-

agent formation control. Automatica, 53:424–440, 2015.

[78] Gina Owens, Yael Granader, Ayla Humphrey, and Simon Baron-Cohen.

Lego® therapy and the social use of language programme: An evaluation

of two social skills interventions for children with high functioning autism

and asperger syndrome. Journal of autism and developmental disorders,

38(10):1944–1957, 2008.

[79] Dimitra Panagou, Dušan M Stipanović, and Petros G Voulgaris. Distributed

coordination control for multi-robot networks using lyapunov-like barrier

functions. IEEE Transactions on Automatic Control, 61(3):617–632, 2016.

[80] Lynne E Parker. Current state of the art in distributed autonomous mo-

bile robotics. In Distributed Autonomous Robotic Systems 4, pages 3–12.

Springer, 2000.

[81] Giuseppe Prencipe and Nicola Santoro. Distributed algorithms for au-

tonomous mobile robots. In Fourth IFIP International Conference on Theo-

retical Computer Science-TCS 2006, pages 47–62. Springer, 2006.

84 BIBLIOGRAPHY

[82] Jim Pugh, Xavier Raemy, Cedric Favre, Riccardo Falconi, and Alcherio Mar-

tinoli. A fast onboard relative positioning module for multirobot systems.

IEEE/ASME Transactions on Mechatronics, 14(2):151–162, 2009.

[83] Chen Qian, Hoilun Ngan, Yunhao Liu, and Lionel M Ni. Cardinality esti-

mation for large-scale rfid systems. IEEE transactions on parallel and dis-

tributed systems, 22(9):1441–1454, 2011.

[84] John G Rogers III, Alexander JB Trevor, Carlos Nieto-Granda, Alex Cun-

ningham, Manohar Paluri, Nathan Michael, Frank Dellaert, Henrik I Chris-

tensen, and Vijay Kumar. Effects of sensory precision on mobile robot local-

ization and mapping. In Experimental Robotics, pages 433–446. Springer,

2014.

[85] Michael Rubenstein, Christian Ahler, Nick Hoff, Adrian Cabrera, and Rad-

hika Nagpal. Kilobot: A low cost robot with scalable operations designed

for collective behaviors. Robotics and Autonomous Systems, 62(7):966–975,

2014.

[86] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A low

cost scalable robot system for collective behaviors. In Robotics and Automa-

tion (ICRA), 2012 IEEE International Conference on, pages 3293–3298.

IEEE, 2012.

[87] Michael Rubenstein, Adrian Cabrera, Justin Werfel, Golnaz Habibi, James

McLurkin, and Radhika Nagpal. Collective transport of complex objects by

simple robots: theory and experiments. In Proceedings of the 2013 interna-

tional conference on Autonomous agents and multi-agent systems, pages 47–

54. International Foundation for Autonomous Agents and Multiagent Sys-

tems, 2013.

[88] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-

BIBLIOGRAPHY 85

grammable self-assembly in a thousand-robot swarm. Science,

345(6198):795–799, 2014.

[89] Michael Rubenstein and Wei-Min Shen. Automatic scalable size selection

for the shape of a distributed robotic collective. In Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 508–

513. IEEE, 2010.

[90] Sajad Saeedi, Michael Trentini, Mae Seto, and Howard Li. Multiple-robot

simultaneous localization and mapping: A review. Journal of Field Robotics,

33(1):3–46, 2016.

[91] Yuvraj Sahni, Jiannong Cao, and Shan Jiang. Middleware for multi-robot

systems. In Mission-oriented sensor networks and systems: Art and science,

pages 633–673. Springer, 2019.

[92] P Sapaty. Military robotics: Latest trends and spatial grasp solutions. Inter-

national Journal of Advanced Research in Artificial Intelligence, 4(4):9–18,

2015.

[93] Guillaume Sartoretti, Max-Olivier Hongler, Marcelo Elias de Oliveira, and

Francesco Mondada. Decentralized self-selection of swarm trajectories:

from dynamical systems theory to robotic implementation. Swarm Intelli-

gence, 8(4):329–351, 2014.

[94] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics.

Springer Science & Business Media, 2008.

[95] Jorge M Soares, A Pedro Aguiar, António M Pascoal, and Alcherio Marti-

noli. A graph-based formation algorithm for odor plume tracing. In Dis-

tributed Autonomous Robotic Systems, pages 255–269. Springer, 2016.

[96] Jorge M Soares, Inaki Navarro, and Alcherio Martinoli. The khepera iv mo-

bile robot: Performance evaluation, sensory data and software toolbox. In

86 BIBLIOGRAPHY

Robot 2015: Second Iberian Robotics Conference, pages 767–781. Springer,

2016.

[97] Kasper Stoy and Radhika Nagpal. Self-repair through scale independent

self-reconfiguration. In Intelligent Robots and Systems, 2004.(IROS 2004).

Proceedings. 2004 IEEE/RSJ International Conference on, volume 2, pages

2062–2067. IEEE, 2004.

[98] Kazuo Sugihara and Ichiro Suzuki. Distributed algorithms for formation of

geometric patterns with many mobile robots. Journal of robotic systems,

13(3):127–139, 1996.

[99] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile

robots. In SIROCCO’96, The 3rd International Colloquium on Structural In-

formation & Communication Complexity, Siena, Italy, June 6-8, 1996, pages

313–330, 1996.

[100] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile

robots: Formation of geometric patterns. SIAM Journal on Computing,

28(4):1347–1363, 1999.

[101] Katherine M Tsui and Holly A Yanco. Assistive, rehabilitation, and surgi-

cal robots from the perspective of medical and healthcare professionals. In

AAAI 2007 Workshop on Human Implications of Human-Robot Interaction,

Technical Report WS-07-07 Papers from the AAAI 2007 Workshop on Human

Implications of HRI, 2007.

[102] Yue Wang, Jie Gao, and Joseph SB Mitchell. Boundary recognition in sensor

networks by topological methods. In Proceedings of the 12th annual inter-

national conference on Mobile computing and networking, pages 122–133.

ACM, 2006.

[103] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a

BIBLIOGRAPHY 87

neighborhood abstraction for sensor networks. In Proceedings of the 2nd in-

ternational conference on Mobile systems, applications, and services, pages

99–110. ACM, 2004.

[104] L Elena Whittier and Michael Robinson. Teaching evolution to non-english

proficient students by using lego robotics. American Secondary Education,

pages 19–28, 2007.

[105] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hun-

dreds of cooperative, autonomous vehicles in warehouses. AI magazine,

29(1):9, 2008.

[106] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A survey and analysis of

multi-robot coordination. International Journal of Advanced Robotic Sys-

tems, 10, 2013.

	Abstract
	Publication
	List of Figures
	Introduction
	Background
	MRS Applications

	DiMRS - a Distributed Intelligent Multi-Robot System
	Introduction
	Existing MRS

	Programming Large-Scale Multi-Robot System with Timing Constraints
	Introduction
	Design Principle
	Ensemble-level abstraction
	Combination of forward and backward reasoning
	Declarative specification of timing constraints

	Language Specification
	Variable, Constant and Boolean Expression
	Fact
	Action
	Rule
	Time assertion

	Compiler and Runtime System
	Compiler
	Workflow of the Runtime System
	Distributed Scheduling
	Path Planning
	Different Algorithms for the Leader and the Followers
	Grid Overlay
	Grid-Based A* Search Algorithm

	Collision Avoidance

	Deployment
	Simulation
	Real-world Experiments
	Localization System
	Intelligent Robots
	Programming Environment

	Example Applications

	Conclusion

	Uniform Circle Formation by Asynchronous Robots: A Fully-Distributed Approach
	Introduction
	Preliminaries
	System Model
	Problem Definition

	A Fully-Distributed Approach
	Algorithm Framework
	Network Construction
	Convex Hull Construction
	Distributed Cardinality Estimation
	Consensus on Circle
	Circle Formation
	Uniform Transformation

	Experimental Results
	Related Works
	Conclusion

	Bibliography

