
Middleware for Multi-robot Systems

Yuvraj Sahni, Jiannong Cao and Shan Jiang

Abstract Recent advances in robotics technology have made it viable to assign
complex tasks to large numbers of inexpensive robots. The robots as an ensemble
form into a multi-robot system (MRS), which can be utilized for many applications
where a single robot is not efficient or feasible. MRS can be used for a wide variety
of application domains such as military, agriculture, smart home, disaster relief, etc.
It offers higher scalability, reliability, and efficiency as compared to single-robot sys-
tem. However, it is nontrivial to develop and deploy MRS applications due to many
challenging issues such as distributed computation, collaboration, coordination, and
real-time integration of robotic modules and services. To make the development of
multi-robot applications easier, researchers have proposed variousmiddleware archi-
tectures to provide programming abstractions that help in managing the complexity
and heterogeneity of hardware and applications. With the help of middleware, an
application developer can concentrate on the high-level logic of applications instead
of worrying about low-level hardware and network details. In this chapter, we survey
state of the art in both distributed MRS and middleware being used for developing
their applications. We provide a taxonomy that can be used to classify the MRS
middleware and analyze existing middleware functionalities and features. Our work
will help researchers and developers in the systematic understanding of middleware
for MRS and in selecting or developing the appropriate middleware based on the
application requirements.

Y. Sahni · J. Cao (B) · S. Jiang
Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
e-mail: csjcao@comp.polyu.edu.hk

Y. Sahni
e-mail: csysahni@comp.polyu.edu.hk

S. Jiang
e-mail: cssjiang@comp.polyu.edu.hk

© Springer International Publishing AG, part of Springer Nature 2019
H. M. Ammari (ed.), Mission-Oriented Sensor Networks and Systems: Art
and Science, Studies in Systems, Decision and Control 164,
https://doi.org/10.1007/978-3-319-92384-0_18

633

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92384-0_18&domain=pdf

634 Y. Sahni et al.

1 Introduction

Recent advances in robotics and other related fields have made it feasible for devel-
opers to build inexpensive robots. The current trend in robotics community is to use a
group of robots to accomplish task objectives instead of using single-robot systems.
These group of robots working in collaboration with each other form an ensemble
which is commonly referred as a multi-robot system (MRS). Use of MRS provides
better scalability, reliability, flexibility, and versatility, and helps in performing any
task in a faster and cheaper way as compared to single-robot system [6]. MRS sys-
tem can be very useful in search and surveillance applications especially for areas
which are difficult or impossible for humans to access. Another benefit of MRS is
that it has better spatial distribution [97]. Many applications such as underwater and
space exploration, disaster relief, rescue missions in hazardous environments, mil-
itary operations, medical surgeries, agriculture, smart home, etc. can make use of
distributed group of robots working in collaboration with each other [6, 50]. It would
not only be difficult but may also lead to wastage of resources if such applications
are developed using single-robot systems.

The benefits provided by MRS do not come at low cost. MRS is a dynamic and
distributed system where different robots are connected to each other using wireless
connection. Robots in MRS should collaborate with each other to perform complex
tasks such as navigation, planning, distributed computation, etc. but it is not as easy
as the systems are usually heterogeneous. Heterogeneity in MRS can arise due to
the use of heterogeneous hardware, software, operating system, or communication
protocol and standards. Besides, the large number of robots used in the systemmakes
the system development even more complicated. It is extremely difficult for a robotic
system developer to develop such complex systems that should be robust, reliable,
scalable, and support the real-time integration of heterogeneous components. Devel-
oping a complete robotic application requires knowledge from multiple disciplines
such as mechanical engineering, electrical engineering, computer science, etc.

These complexities can be reduced by the use of middleware layer. Middleware
provides programming abstractions for a developer so that the developer can focus
on application logic instead of low-level details [20]. Manymiddleware architectures
have been proposed forMRS.There is awide range of applications forMRS, and each
application has some specific requirements. It is not trivial to develop a middleware
forMRSdue to peculiar characteristics ofMRSand diverse application requirements.
The complexity of middleware becomes higher as more features are incorporated. In
fact, it is extremely hard to develop a commonmiddleware for all robotic applications
[86]. Therefore, it is important to study different types of middleware to help make
a better decision while selecting the middleware for an application.

In this chapter, we first study the recent developments in building MRS. We
describe the key applications and requirements of MRS.We then describe the design
goals and provide a feature tree-based taxonomy of MRS middleware for systematic
understanding of middleware. After giving the background of MRS and the moti-
vation for using middleware, we survey state of the art of middleware for MRS.

Middleware for Multi-robot Systems 635

Although survey of middleware for robotics can be found in literature in [28, 48, 65,
66], they do not focus specifically on middleware for MRS. Besides, many new mid-
dleware architectures have been developed and have not been discussed in previous
survey papers.

The contributions of this work are as follows:

• We describe the key requirements and applications of MRS. We also show the
developments made by robotics community in building distributed MRS. This
is useful for researchers and developers who are interested in developing a real
testbed for MRS.

• We provide a feature tree-based taxonomy of MRS middleware features. We have
considered features corresponding to both middleware and MRS. We utilize the
structure of the phylogenetic tree to give a comprehensive framework that can be
used by researchers for systematic understanding and comparison of differentMRS
middlewares. This is the first time such a taxonomy has been given specifically
for MRS middleware.

• We have done a comprehensive review of existing middleware for MRS. 14 differ-
ent middleware examples have been discussed in this work.We have also provided
design goals for middleware and analyzed existing works. The review and analysis
done in this chapter will be especially useful for beginners who are interested in
developing their ownmulti-robot system. Thiswork can also be used by developers
and other researchers in selecting a suitable middleware based on their application
requirements.

The remainder of this chapter is as follows. In Sect. 2, we discuss the recent
developments in building MRS and provide a classification of robotic applications.
In Sect. 3, we discuss the need of middleware for MRS and give some design goals
for MRS middleware. In Sect. 4, we provide a feature tree-based taxonomy of MRS
middleware. In Sect. 5, we do the comprehensive review of existing middleware for
MRS. In Sect. 6, we provide an analysis of existing middleware for MRS.

2 Existing Multi-robot Systems and Applications

This section is divided into two subsections. In Sect. 2.1, we give some key require-
ments of MRS and then discuss the developments made by the robotic community in
building distributedMRS. InSect. 2.2,we give a classification of robotic applications.
We answer two important questions in this section, which are: What is the current
stage of development in MRS? and What are the different possible applications of
MRS?

636 Y. Sahni et al.

(a) Mataric R2 (b) Khepera (c) Khepera II

Fig. 1 Three kinds of robot for multi-robot system in early age

2.1 Existing Multi-robot Systems

Experimental evaluation and validation are important for research in MRS. It often
happens that theoretical models and algorithms with perfect simulation results do
not work under real-world conditions. In MRS, these divergences are even more
amplified compared with single-robot system due to the large number of robots,
interactions between robots, and the effects of asynchronous and distributed control,
sensing, actuation, and communication. Therefore, it is crucial to build a testbed for
MRS to conduct multi-robot research [64]. In this section, we list key requirements
of anMRS and show how robotics community has progressed in building distributed
MRS over the years.

One of the earliest multi-robot systems is the Mataric R2 robots built in the 1990s
(shown in Fig. 1a). They use a group of four robots to demonstrate and verify the
group behavior such as foraging, flocking, and cooperative learning [58]. For each
Mataric R2 robot, it equips piezoelectric bump sensors for collision detection, two-
pronged forklift for picking goods, six infrared sensors for object detection, and radio
transceivers for broadcasting up to one byte of data per second. Nearly the same time,
the K-Team from Switzerland developed Khepera robot team in 1996 and Khepera
II robot team in 1999 [67] shown in Fig. 1b and Fig. 1c, respectively. The size of
the robot is reduced from 36-cm long (Mataric R2 robot) to 8-cm long (Khepera
and Khepera II). The Khepera II robot has stronger functionality than the Mataric
R2 robot such as more powerful computation ability and more reliable wireless
communication. Due to the development of electronic technology, the Khepera II
robot also has a smaller size.

After the early age,more andmoremulti-robot systems are built in both laboratory
and industry nowadays. Two representative multi-robot systems are Swarmbot [59,
60] developed by McLurkin and iRobot for research purpose in 2004 (shown in Fig.
2a) and Kiva [96] developed by Amazon for warehouse usage in 2007 (shown in Fig.
2b). Also, the research community has organized a lot of multi-robot competitions
such as RoboCup for robotic soccer, MAGIC competition for military surveillance,

Middleware for Multi-robot Systems 637

(a) Swarmbot (b) Kiva

Fig. 2 Two representative multi-robot systems in recent years: Swarmbot for research purpose and
Kiva for industry usage

andMicroMouse formaze exploration. A lot ofmulti-robot systems result from these
competitions such as AIBO dog [18], NAO humanoid [33], and Cmdragons [12].

We have observed several features of a multi-robot system:

• Cost: inexpensive for each single robot. A general purpose for MRS is to let quan-
tities of agents, each of which owns limited ability, to achieve a complex system-
level target. The systemmust be designed to be inexpensive to allow researchers to
incrementally increase the size of the system.When a multi-robot system is scaled
up, it will be hard to cover the fee if each individual robot is highly expensive.

• Size: small size for each single robot. Given limited space, robots with the large
size may have problems of frequent collisions, communication blocking, and less
flexibility. Also, robots in huge size go against the scalability of the whole system.

• Functionality: stable and strong sensibility for each single robot. If every robot
has stable functionality, the whole system can be reliable enough. The stronger the
sensibility is, the more the information it may acquire from itself, the environment,
and other robots. Hence, the whole system may achieve more complex tasks.

As we know, stronger functionality may result in larger size and higher cost.
Therefore, to build an MRS, it is crucial to find a balance between cost, size, and
functionality.

Though there have been a lot of multi-robot systems, most of them are con-
trolled in centralized way. In another word, there is a central controller to sched-
ule the robots to perform cooperative tasks. Centralized multi-robot system can be
hardly scaled up due to limited computation capability of the central controller.
Hence, scholars transfer their research direction to distributed multi-robot system
[30]. There are varieties of active research topics that explore efficient algorithms to
control distributedmulti-robot system, such as self-reconfiguration [7, 76] and explo-
ration [14, 38]. Scholars generally envision their algorithms to be feasible for a dis-
tributed multi-robot system consisting of hundreds, thousands, and even more robots

638 Y. Sahni et al.

(a) Kilobot (b) R-one (c) Khepera IV

(d) E-puck (e) Scarab

Fig. 3 Five representative robots suitable for multi-robot system nowadays

[7, 25, 90]. However, these algorithms are usually evaluated in simulator only [7,
76], or deployed on a small group of tens of robots or fewer [44, 45] due to cost, time,
or complexity. As we previously mentioned, a simulator can hardly model robots’
movement, communication, and sensibility in a precise way. Therefore, it would be
significant if a large-scale distributed MRS can be built up for algorithm evaluation.

An MRS is said to be fully distributed [72] if each robot in the system supports:

• Distributed control: to process gathered information and to make the decision
locally while achieving the system-level goal.

• Distributed sensing: to sense itself, the environment, and other robots locally.
• Distributed actuation: to navigate freely in the environment without collision with
obstacles and other robots.

• Distributed communication: to receive and transmit data from other robots in a
scalable robot network.

Knowing basic elements for a distributed MRS, we characterize some typical
MRSs in detail and compare their functionality and cost. The criteria are to select
open-source, still active, and relatively high-impact MRS. The summary of compar-
ison can be seen in Table 1. In detail, five multi-robot systems are considered as
follows: Kilobot [77, 79], r-one [61], Khepera IV [88] (evolved from Khepera III
[73]), e-puck [68], and Scarab [64].

Middleware for Multi-robot Systems 639

Table 1 Acomparison of off-the-shelfmulti-robot systems in terms of functionalities and hardware

Kilobot R-one Khepera IV E-puck Scarab

Source Harvard U Rice U K-Team EPFL Pennsylvania
U

Locomotion Vibration Wheel
encoders
3-axis gyro
3-axis
accelerome-
ter

Wheel
encoders
3-axis gyro
3-axis
accelerome-
ter

Wheel
encoders
3-axis gyro
3-axis
accelerome-
ter

Wheel
encoders
3-axis gyro
3-axis
accelerome-
ter

Sensibility 1 IR range
sensor

8 IR range
sensors 8
bump sensors
4 light
sensors a
speaker

8 IR range
sensors 8
light sensors
4 IR cliff
sensors 5
ultrasonic
range sensors
1
microphone
1 speaker 1
color camera

8 IR range
sensors 8
light sensors
1
microphone
1 speaker 1
color camera

Laser range
sensor
high-res
color camera

Communication IR signal IR signal
radio

802.11 b/g
Wi-Fi
Bluetooth 2.0
EDR

Radio Radio

Computation 8 MHz
Atmega328
32 kB
Memory

50 MHz
ARM
Cortex-M3
64 KB
SRAM 256
KB Flash

800 MHz
ARM
Cortex-A8
512 MB
RAM 512
MB flash 4
GB flash for
data

Microchip
dsPIC MCU
8 KB RAM
144 KB flash

/*

Battery life (h) 3–24 4 7 1–10 /*

Size (cm) 3.3 10 14 7.5 22.2

Cost ($) 14 220 2625 545 3000

*not specified

• The Kilobot1 (shown in Fig. 3a) is designed by the K-Team and used in SSR lab
of Harvard University. Kilobot is a low-cost robotic system especially suitable for
research on swarm robotics. The functionality of each individualKilobot is limited,
i.e., only can sense the distance from its neighbor, sense the intensity of visible
light, and receive/transfer message from/to its neighbors. However, a collective
of Kilobot achieves relatively complicated behaviors such as generating different
shapes [80] and transporting large objects [78]. This kind of robotic system in
which every robot is with limited ability while can achieve complicated behavior

1http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html.

http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html

640 Y. Sahni et al.

together is called swarm robotics. It is inspired by biological swarm behaviors
[71] such as bird flocking and ant manipulation. Another such kind of system is
the I-Swarm [46] from the University of Stuttgart. However, the robot Jasmine
in I-Swarm is far more expensive ($130) compared with Kilobot ($14) while the
functionality is similar. Simple functionality makes low cost possible and, on the
other hand, limits the feasible environment. For example, a message is transmitted
using the reflection of infrared signals. Therefore, the floor where the Kilobots
move must be smooth enough, or infrared signals may not reach individual’s
neighbors.

• The r-one2 (shown in Fig. 3b) is designed and used in Rice University. The r-
one is a relatively low-cost robot that enables large-scale multi-robot research
and education. In terms of locomotion, each robot is equipped with two-wheel
encoders, a 3-axis gyro, and a 3-axis accelerometer to move on a floor with aware-
ness of odometer, speed, and acceleration. With respect to communication, there
are two kinds of communication method. First one is to use infrared transmitter
and receiver to achieve directional communication, and the second one is to use
radio to achieve nondirectional communication with higher bandwidth. The sens-
ing ability is provided by using 8 bump sensors for 360◦ detection. r-one provides
ample functionalities at a low cost which has motivated its use for education area
application [62]. Several courses are taught using r-one. r-one can also be used for
multi-robot manipulation [63] and transportation [36] if each robot is equipped
with a gripper.

• The Khepera IV3 (shown in Fig. 3c) is designed and made by K-Team. It is a
commercial robot with abundant and powerful functionality compared with non-
commercial ones. A standard Khepera IV has the same equipment for locomotion
as r-one. For the communication part, Khepera uses 802.11 b/g Wi-Fi and Blue-
tooth 2.0 EDR for wireless communication instead of infrared signals or radio.
Khepera IV has strong sensibility due to the presence of multiple sensors. A Khep-
era IV is equipped with five ultrasonic transceivers and eight infrared sensors for
obstacle detection, four extra infrared sensors for cliff detection, one microphone
and one color camera for multimedia functions, and twelve light sensors and
three programmable LED for human–robot interaction. Besides, Khepera IV is
highly extensible. Developers may extend native functions using the generic USB,
Bluetooth devices, and custom boards plugging into the KB-250 bus. Khepera
IV wrap the remarkable abilities of sensing, communication, and locomotion in a
small body of 14-centimeter diameter. However, the cost of each Khepera IV is
over US$ 2600. The Khepera series robot is adopted by DISAL of EPFL and is
used for various research topics such as multi-robot learning [26] and odor plume
tracing [87].

• The e-puck4 (shown in Fig. 3d) is designed and made by EPFL. E-puck designer
Francesco Mondada started with the Khepera group and moved to make simpler

2http://mrsl.rice.edu/projects/r-one.
3http://www.k-team.com/khepera-iv.
4http://www.e-puck.org/.

http://mrsl.rice.edu/projects/r-one
http://www.k-team.com/khepera-iv
http://www.e-puck.org/

Middleware for Multi-robot Systems 641

education robots. An e-puck is equippedwith two-wheel encoders, a VGA camera,
three omnidirectional microphones, 3-axis accelerometer, eight infrared sensors,
and eight ambient light sensors. Also, e-puck is only 7 cm long and easy to extend
functionality. For instance, rotating scanner and turret with three linear cameras
are two optional extensions. E-puck is specially designed and widely used for edu-
cation purpose [21]. It is used in the teaching areas of signal processing, automatic
control, behavior-based robotics, distributed intelligent systems, and position esti-
mation and path finding of a mobile robot [68]. In addition, e-puck is also used
in many research topics such as supervisory control theory [51] and distributed
control strategy [83].

• The Scarab shown in Fig. 3e is designed and made at the University of Penn-
sylvania. Compared with other robots, the design of Scarab shifts from minimal
multi-robots to a complex and robust system. Two of the major components in a
Scarab are the Hokuyo URG laser range finder and the Point Grey Firefly IEEE
1394 camera. Using the laser and camera, Scarab is capable of the tasks requiring
strong sensibility and high computation payload such as SLAM (simultaneous
localization and mapping) [75] and vision processing. However, a Scarab is sig-
nificantly large, heavy, and expensive with 23 cm diameter, 8 kg weight, and over
$3000 cost. Consequently, Scarab is not practical for large populations, i.e., more
than ten Scarabs working together. But using less than five Scarabs for multi-robot
SLAM is applicable [81].

2.2 Multi-robot System Applications

Robots contain both sensing and actuator components which make them useful for
a wide range of applications. Applications which involve navigation, exploration,
object transport, and manipulation benefit from the use of MRS. Researchers have
been trying to develop biologically inspired robots that incorporate not only the
structure of insects and animals but also their social characteristics to design multi-
robot system. Researchers try to emulate the communication behavior in bees, birds,
and other insects to design control and coordination system for MRS. We have
classified the robotic applications into seven categories as shown in Fig. 4. A brief
overview of the robotic application is also provided below. These applications are
generic and not specifically related to MRS. However, the current research trend is
that most applications are now being developed using MRS instead of single-robot
system.

• HealthcareRobots:Robots havebeenusedbyhealthcare andmedical professionals
for a long time. One of the most important uses of robots in health care has been
for performing and assisting surgeries. Robots are used for performing precise and
minimally invasive surgeries [9, 15]. The current research trend in this area is to
use biologically inspired robots that can move in confined spaces and manipulate
objects in complex environments [15]. Other areas where robots are being used in

642 Y. Sahni et al.

Robotic Applications

HealthCare Robotics

Industrial Robotics

Service Robotics

Military Operations

Search/Rescue missions

Exploration/Surveillance applications

Educational Robotics

Surgery Rehabilitation Assistance

Assembly
Line

Pick-Up
Delivery Logistic

Sweeping Customer Care

Explosive
Ordinance
Disposal

Carrying
Weapons

Monitoring
Territories

Disaster
Rescue Mapping Structural

Inspection

In-Situ
Medical

Assessment

Space
Exploration

Underwater
Exploration

Sea
Surveillance Archaeology

Engineering
Courses

Critical
Thinking Psychotherapy

...

...

...

...

...

...

...

Fig. 4 Classification of robotic application

this application domain is rehabilitation and assistive robotics [34, 91]. Robots are
used for recovery of patients with impaired motor and cognitive skills [34]. Robots
are being used for assistance to elderly and other physically or mentally disabled
individuals to help them live independently. There are even companion robots that
help such individuals with special needs. However, due to lack of awareness and
other reasons, patients and even healthcare professionals are reluctant to accept
robots for medical purpose [11, 91].

Middleware for Multi-robot Systems 643

• Industrial robotics: Robots are now amain component inmanufacturing and logis-
tics industries. Industries have been using robots for tasks which are impossible or
difficult for humans, such as working in a room filled with hazardous substances,
inside a furnace, etc. [34]. Several robotic application studies in manufacturing
industries have been mentioned in [29] including die casting applications, forg-
ing applications, heat treatment applications, glass manufacturing applications,
etc. All large-scale manufacturing industries especially automobile, component
assembly, and many other industries involving tasks related to packaging, test-
ing, and logistics rely on the use of robots for efficient task completion [85].
Besides automation, robots are also used for assisting humans in their activities in
industries.

• Service robotics: Service robots are fully or semi-autonomous robots that perform
tasks useful for the well-being of humans except in manufacturing related activi-
ties. Service robots are useful for performing tasks that are trivial, dangerous, or
repetitive for humans. Home service robots are one such type of robots. They can
be used for activities that range from cleaning floor, kitchen, bathroom, windows,
swimming pool to lawn mowing, washing clothes, and many other activities [34,
85]. Besides home, service robots can also be used for other services such as object
pickup and delivery, customer care, etc. [34].

• Military operations: Most of the military organizations around the world are using
different types of robots for situations that are risky for humans [82]. Robots are
also cheaper to maintain than having the human personnel. Military robots can
be classified into three categories, which are ground robots, aerial robots, and
maritime robots [82]. These military robots are very often used for battlefield
surveillance from ground, air, and underwater level. Ground robots are also being
utilized for explosive ordinance disposal. Besides carrying out surveillance oper-
ations in enemy territories, unmanned aerial vehicles (UAVs) are also used for
carrying missiles to attack enemy sites.

• Search and Rescue missions: Rescue robots are used to provide real-time informa-
tion about the situation to aid search and rescuemissions.Rescue robots are used for
performing tasks such as searching in unstructured and hazardous environments,
reconnaissance and mapping, rubble removal, structural inspection, in-situ medi-
cal assessment and intervention, and providing logical support [85]. Rescue robots
can be utilized for many situations including natural disasters, mining accidents,
fire accidents, explosions, etc. [34]. Rescue robots are also useful for post-disaster
experimentation [85]. A key aspect of this application is that rescue robots must be
autonomous and they are supposed to work in an unstructured environment where
any pre-existing communication network may not work properly.

• Exploration/Surveillance application: Robots are useful for collecting data in
unstructured environments, unknown territories, and from areas which are dif-
ficult or impossible for humans to access. Space exploration, underwater explo-
ration, and exploration in hazardous environments such as radiation prone areas,
wilderness, mines, damaged buildings, etc. are some examples of this application
[85]. Exploration or surveillance is an important part of other applications too
such as military operations, and rescue missions. Navigation, coordination, and

644 Y. Sahni et al.

collaboration are three important tasks performed by robots in surveillance appli-
cations. A lot of researchers are trying to develop biologically inspired robots that
can navigate in confined spaces and perform complex tasks [47].

• Educational robotics: Robots are now being used in schools and universities for
the educational purpose also. Students can learn about multiple disciplines such as
computer science, electronics, mechatronics, etc. by developing robotic applica-
tions and learning from the experience [3]. However, there is a drawback with this
approach as students only learn about robot-related fields. Several studies have
been reviewed in [10], and it is observed that most studies only help in teach-
ing concepts related to physics and mathematics such as Newton’s Law of motion,
kinematics, fractions, etc. Students who are interested in other fields such as music
or arts do not get much benefit out of this. There are few instances where robots
have been used for teaching students something different from mathematics or
physics. In [95], Lego robots have been used to teach about evolution. Lego robots
have also been utilized in [70] to improve social connection in individuals with
autism and Asperger’s syndrome. This shows that robots have huge potential for
contribution toward education. Research efforts are required to find ways to use
robots for the development of skills such as critical thinking, problem-solving,
teamwork, etc.

3 Design Goals for MRS Middleware

The current trend in robotics is to use MRS for application development instead of
a single-robot system. Multiple robots are connected using a wireless network and
they work together as a group to accomplish application objectives. These robots
are usually composed of heterogeneous hardware and software components that col-
laborate and coordinate with each other to perform complex tasks such as planning,
navigation, distributed computation, object manipulation, etc. [66]. It is not trivial
to design software architecture for MRS due to many challenges such as interoper-
ability, dynamic configuration, real-time integration of heterogeneous components,
etc. Middleware can resolve these issues by providing programming abstractions and
help in reducing the development time and cost [66]. Middleware can also make the
application development easier and flexible by providing reusable services. It is, how-
ever, challenging to develop a middleware as middleware needs to not only deal with
complex issues related to MRS but also satisfy multiple application requirements.
In this subsection, we have explained some design goals that should be considered
while developing a middleware for MRS. An ideal middleware should be able to
support all the features but it should be noted that the complexity of middleware
becomes higher as more features are supported. Therefore, it is a trade-off between
the number of features supported by a middleware and its complexity.

• Hardware and software abstractions: Developing a robotic application requires
knowledge of multiple disciplines, which includes knowledge of hardware and

Middleware for Multi-robot Systems 645

software components being used, and corresponding application domain. Usually,
robotic application developers have knowledge of their application domain but it is
difficult for them to have expertise on low-level hardware and software issues. The
primary purpose of usingmiddleware is tomake the application development easier
and faster. Development of an application using MRS can be done easily if high-
level abstractions are provided to a robotic application developer. Having hardware
and software abstractions will enable developers to focus on high-level application
requirements rather than low-level hardware and network issues. Besides making
the application development easier, it will also help in enhancing the efficiency of
the application.

• Interoperability: MRSs can have multiple sources of heterogeneity. Heterogeneity
in MRS may arise due to the difference in either hardware or software of multiple
robots. It is not uncommon to use robots from different hardware manufactur-
ers within the same MRS. Even with the same hardware manufacturer, hardware
heterogeneity can arise due to difference in the sensor and actuators being used
for the robots. Different communication standards can be used within the same
MRS which also leads to heterogeneity in the network. Even if the homogeneous
hardware is used for MRS, there can be differences in the software architecture
of multiple robots. Software modules developed by different programmers using
different programming environments can also lead to heterogeneity. Middleware
should provide abstractions for developers to enable interoperability between het-
erogeneous robots. Middleware should enable platform independence such that
robots can be developed on different platforms. Middleware should allow robots
developed using different platforms or containing heterogeneous hardware and
software components to communicate with each other.

• Real-time support for required services: Time-critical robotic applications such
as rescue operations, medical surgeries, military operations, etc. require real-time
support for services. Most of the applications require real-time support that is
required for many services that are responsible for collision detection and avoid-
ance, collaboration between multiple robots in MRS, integration of multiple com-
ponents in robots, etc. There are some tasks which can afford a delay in services
but for most of the services used in MRS, real-time support is required.

• Dynamic resource discovery and configuration: MRS is a dynamic system where
robots are mobile and since robots are usually used in unstructured environments,
there is always change in connectivity. MRS is a scalable system where robots
can be added, removed, or changed in configuration. There is always change in
the configuration of the network. Middleware should enable dynamic discovery
of resources which includes both robots and the software services being used.
Middleware should enable autonomous detection and recovery from any fault in
the network or software. Middleware should provide support for MRS to be self-
adapting, self-configuring, and self-optimizing [66].

• Flexibility and Software reuse: Software reuse means using the same service even
for a different application, hardware, or software environment. Middleware should
enable flexibility in using software services such that services are defined by their
functionalities and not based on the hardware, software, or the applications for

646 Y. Sahni et al.

which they are used. This implies that a developer should not redevelop the service
every time there is some change in hardware, operating system, or even application.
Middleware should enable the developer to add new functionalities to a system
without having to redevelop everything from scratch.

• Collaboration among multiple robots: In MRS, multiple robots collaborate with
each other by sharing data. Distributed computation is necessary to enable col-
laboration between robots; however, due to heterogeneity in MRS, it becomes
challenging to understand data belonging to the different types of robots. Another
requirement for collaboration between robots is that it should be real-time which
makes it even more complex for developers to support this functionality. Mid-
dleware should provide services that make it easier to do collaboration between
robots. Robots should not only be able to transfer data between each other but also
understand the meaning of shared data. Middleware should provide abstractions
that can help achieve this objective.

• Integration with other systems: Nowadays, robotic applications are developed by
integrating robots with other systems such as Internet of things (IoT) and cloud.
Cloud robotics is a new paradigm where robots utilize computation and storage
benefits of the cloud to perform tasks [39]. In near future, IoT and robotics will
be combined to provide better services to humans. Issues and technological impli-
cation in implementing IoT-aided robotic applications have been studied in [34].
In coming future, more technologies will be integrated with robotics to provide
improved services. Middleware should enable integration of MRS with other sys-
tems and technologies. Middleware should provide abstractions for a developer to
integrate different technologies.

• Management and monitoring tools: A lot of components are involved in develop-
ment, deployment, and functioning of MRS including multiple robots consisting
sensors and actuators, software services, andmanyother resources.Due to the com-
plexity of MRS, it is difficult for a developer to control everything unless there are
some tools available that can help in management and monitoring of the overall
system. Besides providing services to programMRS, middleware can also provide
management tools to configure, debug, and view the overall MRS [20]. Middle-
ware should also enable the developer to view whole system component-wise to
provide a better understanding. This functionality will make it easier even for
non-programmers to understand and contribute to the development of the robotic
application.

• Support for the addition of extra services: MRS is usually deployed in an unstruc-
tured environment and every application requires some specific services. Middle-
ware should be flexible to enable the addition of services at runtime. Middleware
should support the addition of new services to address both network-specific and
application-specific qualities of service (QoS) requirements. It should support
the addition of services to address issues such as security, reliability, availability,
energy optimization, collision detection and avoidance, etc.

Middleware for Multi-robot Systems 647

4 A Taxonomy of MRS Middleware

There are tens of existing middleware for multi-robot systems focusing on vari-
ous aspects and purposes. Among the off-the-shelf middleware, it is difficult for
a beginner to choose an appropriate one suitable for a specific multi-robot system
or multi-robot application. To address this issue, we propose a taxonomy of MRS
middleware features to formally describe MRS middleware. In detail, we utilize the
structure of the phylogenetic tree to provide a comprehensive, yet succinct frame-
work that allows for a systematic comparison ofMRSmiddleware. Developers could
look up desired features in the phylogenetic tree for the purpose of finding a suitable
MRS middleware. In biology, a phylogenetic tree or evolutionary tree is a branching
diagram showing the inferred evolutionary relationships among various biological
species [24]. In the field of computer science, phylogenetic tree has been used to
visualize a taxonomy in many survey papers such as WSN programming abstrac-
tions [69], WSN middleware [94], and programming distributed Intelligent MEMS
[49], but it has not been used for describing MRS middleware yet.

In Fig. 5, we decompose the MRS middleware features into ten leaf features.
Between Fig. 6 and Fig. 13, we describe each leaf feature appeared in Fig. 5 in
detail. In these figures, we utilize some notations to describe relationship among
features. The relationship between a father feature and several child features can
be either inclusive or alternative, notated by solid dot and hollow dot, respectively.
Also, a child feature can be either necessary or optional, notated by solid square and
hollow square, respectively.

As shown in Fig. 5, whenwe are investigatingMRSmiddleware features, it can be
divided into software features from middleware and hardware features from MRS.
On the one hand, features from middleware can be divided into two parts. One is
the services by the middleware and the other is the system architecture of the mid-
dleware. In terms of provided services, it includes functional services as well as
nonfunctional services. With respect to features from the system architecture, three
parts are included which are programming abstraction features, infrastructure fea-
tures, and coordination method features, respectively. On the other hand, features
from MRS come from both the infrastructure and concrete applications. The fea-
tures from infrastructure can be node-level one and system-level one. The features
from concrete applications are divided into subcategories based on environment,
scope/area, and purpose/goal. In this way, MRS middleware features are divided
level by level and result in ten leaf features. We explain and describe each leaf
feature in detail in the following paragraphs.

There are a variety of functional features (shown in Fig. 6) for MRS middleware.
Functional features of MRS middleware are the basic functions implemented by
the middleware. Such functions include localization, mapping, collision avoidance,
path planning, vision processing, and many others. With the off-the-shelf imple-
mentation, developers may use these basics but important functions conveniently.
Nonfunctional features (shown in Fig. 7) are features provided by the middleware in
terms of QoS, for example, security, fault tolerance, reliability, real-time support, etc.

648 Y. Sahni et al.

MRS
Middleware

Feature

Feature from
Middleware

Feature from
MRS

Function
Feature

Feature from
Architecture

Non-Function
Feature

Feature from
Service

Programming
Abstraction

Feature

Infrastructure
Feature

Coordination
Feature

Feature from
MRS

Infrastructure

Feature from
MRS

Application

Node-Level
Feature

System-Level
Feature

Environment
Feature

Scope/Area
Feature

Purpose/Goal
Feature

Fig. 5 Overview of feature tree of MRS middleware

Function Feature

Localization Path PlanningCollision
Avoidance

Vision
ProcessingMapping Other

Functionalities

Fig. 6 Function feature

Middleware for Multi-robot Systems 649

Non-Function
Feature

Security Fault Tolerance Real-Time
Support

Reliability
Support

Other
Support

Fig. 7 Nonfunction feature

Programming
Abstraction

Feature

Programming
Paradigm

Abstraction
Level

DeclarativeImperative Ensemble-Based Node-Based

Sequential Event-driven Funtional Rule-based SQL-like

Fig. 8 Programming abstraction feature

Holonomic MRS middleware provides as many nonfunctional features as possible
for developers so that they can choose a set of the features depending on specific
applications. You cannot have your cake and eat it too, it is very suitable for some of
the nonfunction features. For example, if the developer desires the privacy features,
it may consume more time and consequently affects the real-time feature. Similar
issue may be observed when fault tolerance and real-time support are provided by
the middleware. There is always some form of trade-off between different nonfunc-
tion features. Such conflicts of nonfunction features are ubiquitous for middleware
in other fields too such as wireless sensor network [19] and cloud computing [16].

ModernMRSmiddleware always provides a programmingmodel or programming
abstraction to facilitate development. A programming model masks the complexity
of the system. Programming paradigm and abstraction level serve as the two fun-
damental elements of a programming model (shown in Fig. 8). The programming
paradigm refers to the abstractions used to represent individual elements of a pro-
gram. The individual elements of a program include constants, variables, clauses
(iterations, conditions, etc.), and functions. Programming paradigm of a program-
ming model can be imperative or declarative. While programming with imperative
approach, the state of the program is explicitly expressed through statements. Rele-
vant subcategories of imperative approaches include sequential and event-driven. On
the other hand, while using a declarative programming model, the application goal
is described without specifying how it is accomplished. Declarative approaches can
be further classified into functional, rule-based, SQL-like, and special-purpose. The
abstraction level refers to how developers view the multi-robot system and can be
either node-based or ensemble-based. Node-based abstraction is used in traditional

650 Y. Sahni et al.

OS Support Simulator

Infrastructure
Feature

Logging
Facility

Debugging
Facility

Hardware
Configuration

Support

Graphical
Interface

Unix-like Windows Other OS

Language
Support

C++ Java Python Other
Language

Fig. 9 Infrastructure feature

programming model where each robot is programmed, respectively. When a group
of robots is assigned a task, it is natural to think about what the robot ensemble
should do. This leads us to consider the ensemble-level abstraction. The entire MRS
can be viewed as a single and monolithic unit for the programmer. Ensemble-level
abstraction is referred to as macro-programming in wireless sensor networks [35].

There is a wide range of infrastructures (shown in Fig. 9) for MRS middleware.
Infrastructures of MRS middleware include hardware configuration support, operat-
ing system support, logging facility, debugging facility, simulator, language support,
and graphical interface.

• Since MRS middleware may be applied to all kinds of robotic system, hardware
configuration support is required to configure the hardware of a specific kind of
robot.

• MRS middleware must support a specific operating system or be cross-platform.
Traditional operating systems can be UNIX-like OS, Microsoft Windows, Java
virtual machine, and others.

• Logging facility and debugging facility are essential and useful for application
development, algorithm evaluation. Looking up the log and debugging informa-
tion, developers can have direction for development and improvement, which save
significant amount of time.

• Simulator is useful when deployment is costly, hardware is unavailable, or devel-
opers want to testify algorithms before deployment.

• Language support is another necessary feature forMRSmiddleware. It can support
one or several languages, for example, C++, Java, Python, etc.

• Graphical interface can be used to visualize the MRS and for human–robot inter-
action purpose.

Coordination (shown in Fig. 10) is a general issue in multi-agent system as well as
inMRSwhere each realistic robot is regarded as an agent. A robot is a computational
device capable of sensing, computing, and locomoting. The sequence of sensing,
computing, and locomoting form a computation cycle of a robot. The coordination
method is classified based on the relationship among computation cycles of the
robots. In the asynchronized setting, the robots in the MRS do not have a common
notion of the time. That is to say, there is no assumption on the relationship among
the cycles of the same robot or different robots. The only assumption is that all

Middleware for Multi-robot Systems 651

Coordination
Feature

Synchronized Semi-Synchronized Asynchronized

Fig. 10 Coordination feature

Node-Level
Feature

Sensing Ability Movement
Ability

Communication
Ability

Vibration Wheel
Encoder Propeller RatioOthers Infrared

Message OthersLaser Compass Camera Others

Fig. 11 Node-level feature

cycles finish in finite time. The robots are said to run in a semi-synchronized setting
if all robots share a global clock and their actions are atomic. The robots can be
either active or inactive at each clock tick and only robots in active state perform
their cycles. To make sure every clock tick and every robot to be meaningful, it is
restricted that at least one robot is active at every clock tick and every robot becomes
active for infinite time instants. In a special case, every robot is active at every time
instant. In this case, the robots are said to be fully synchronized. In this setting, all
the robots are in the same state at each clock tick.

With respect to node-level features (shown in Fig. 11) of a single robot, it refers
to the hardware features relating to sensing ability, locomotion ability, computation
ability, and communication ability. For the sensing part, an individual robot may
contain laser, compass, camera, microphone, etc. For the locomotion part, each robot
may use vibration, wheel encoders, or propellers to navigate the environment. For
the computation part, the CPU frequency, the memory size, and the data storage size
vary a lot. For the communication part, ratio, infrared signals, Wi-Fi, and Bluetooth
can be utilized to achieve it.

In terms of system-level features (shown in Fig. 12) of the whole MRS, it can
be categorized by coordination method, embedded network protocol, and communi-
cation model. For the coordination method in an MRS, it can be centralized where
there is a central controller, decentralized where the MRS is divided into groups, or
fully distributed where all robots are equal. For communication, robot network may
utilize TCP, UDP, ZigBee, or other network protocol. Communication is a general
issue in network systems as well as in MRSs which can be regarded as robot net-
works. Communication features can be classified in the light of awareness, scope,
and addressing. Awareness feature within communication can be further classified
into explicit or implicit. If the communication is explicitly exposed to developers,

652 Y. Sahni et al.

Coordination
Feature

Centralized Decentralized Fully
Distributed

System-Level
Feature

Network Protocol
Feature

TCP UDP Zigbee Others

Communication
Feature

ScopeAwareness

Physical
Neighbor

Multi-Hop
Group GlobalExplicit Implicit

Addressing

Physical Logical

Fig. 12 System-level feature

Environment
Feature

Land Underwater Air Space Others

Scope/Area
Feature

Military Agriculture Education Other
Scope

Purpose/Goal
Feature

Information
Gathering

Service
Providing

Educational
Purpose

Other
Purpose

Features from
MRS Application

Fig. 13 Features from MRS application

it is termed as explicit. On the other hand, if the communication is hidden behind
some higher level construct, it is said to be implicit. The scope of communication
refers to the set of robots that exchange data to accomplish a given task. Physical
neighborhood, multi-hop group, and system-wide serve as the three approaches for
the scope of communication. The scope is physical neighborhood if programmers
are only provided with method for exchanging data among robots within direct radio
range. The scope is said to be multi-hop group if data exchange can be achieved
with using multiple-hop transmission. The scope is system-wide if all the robots in
the MRS are possible to be involved in data exchange. With respect to addressing
in MRS middleware, it utilizes physical addressing if the target robots are identi-
fied using statically assigned identifiers. Otherwise, the target robots are identified
through properties provided by the applications. This kind of addressing approach is
logical addressing, which is generally called attribute-based addressing in wireless
sensor networks [2].

In terms of application features, we sort it using environment, scope/area, and pur-
pose/goal, respectively (shown in Fig. 13). An MRS can be deployed in one or more
kinds of environments including land, underwater, air, and even space environment.
The area of MRS application can be military, agriculture, education, household,
manufacturing, etc. The purpose of an MRS application can be information gather-
ing, service providing, educational usage, and others. Full discussion of the MRS
applications can be found in Sect. 2.2.

Middleware for Multi-robot Systems 653

5 Representative Middleware for MRS

In this section, we give a comprehensive overview of some popular middleware
for MRS. This list is not exhaustive and there are many more middleware such as
OROCOS [13], SmartSoft [84], CLARAty [93], etc. that have not been discussed in
this work. We have focused on more recent and popular middleware for robotics. For
each middleware that has been included below, we have discussed the architecture,
objective, development tools and utilities provided, and platforms and programming
languages supported by the middleware. An overview of various MRS middlewares,
discussed in this section, has been shown in Table 2. This overview is done on the
basis of middleware-specific features illustrated in Fig. 5, which shows the overview
of feature tree of MRS middleware.

Player/Stage: Player5 is device server that provides clients with programming
interfaces to control robots comprising of sensors and actuators [31]. Player is imple-
mented in C++ as a multi-threaded TCP socket server for transparent robot control.
Socket-based robot server provides many benefits such as platform independence,
language independence, and location neutrality which means a client can access and
control robotic devices anywhere on the network. Player has been designed to sup-
port heterogeneous devices and clients simultaneously at different timescales [31].
One-to-many client/server architecture has been followed which implies that one
server can serve multiple clients. Each client is connected to Player by a TCP socket
connection, while a device can be connected to Player by any appropriate method.
Client can be implemented in any language providing socket mechanism such as C,
C++, Tcl, Java, Python, etc.

Player is modular; therefore, devices can be added dynamically. UNIX model of
treating devices as files has been chosen to provide an abstraction for a variety of
devices. To receive sensor readings, client opens the device with read access while
for controlling an actuator, client must open the device with write access. Each
device has an associated command and data buffer that provides an asynchronous
communication channel between device threads and client reader and writer threads.
Clients and devices are decoupled fromeach other. Player also supports request–reply
mechanism, similar toioctl(), for configuration requests that canbeused to access
specific hardware features. There is no device locking mechanism implemented in
Player; therefore, clients can overwrite commands of the other clients.

Stage is a simulator that is used for simulating population of mobile robots, sen-
sors, and environmental objects. This enables development and testing of clients
without accessing real hardware and environment. Stage simulator is also useful for
experimentation of novel devices that have not been developed yet [31]. Sensors
and actuator models in Stage are available through normal Player interface. Usually,
clients cannot differentiate between real and simulated stage equivalents. Stage also
supports non-locking, platform independence, and language independence charac-
teristic of interfaces in Player.

5http://playerstage.sourceforge.net/.

http://playerstage.sourceforge.net/

654 Y. Sahni et al.

Ta
bl
e
2

O
ve
rv
ie
w
of

ex
is
tin

g
M
R
S
m
id
dl
ew

ar
e

M
id
dl
ew

ar
e

Fu
nc
tio

n
fe
at
ur
es

N
on
fu
nc
tio

n
fe
at
ur
es

Pr
og
ra
m
m
in
g

ab
st
ra
ct
io
n

In
fr
as
tr
uc
tu
re

fe
at
ur
es

C
oo
rd
in
at
io
n
fe
at
ur
e

Pl
ay
er

L
oc
al
iz
at
io
n,
m
ap
pi
ng
,

pa
th

pl
an
ni
ng

,c
ol
lis
io
n

av
oi
da
nc
e,
vi
si
on

pr
oc
es
si
ng

Se
cu
ri
ty
,r
ob
us
tn
es
s

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e/
W
in
do
w
s,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
Si
m
ul
at
or
—

St
ag
e/
G
az
eb
o,

C
,C

+
+
,

Ja
va
,P

yt
ho
n,

et
c.

A
sy
nc
hr
on
iz
ed

O
rc
a

L
oc
al
iz
at
io
n,
m
ap
pi
ng

,
et
c.
re
us
ab
le
fr
om

ot
he
r

pr
oj
ec
ts

N
on
e

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e/
W
in
do
w
s/
M
ac

O
S
X
,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
gr
ap
hi
ca
l

in
te
rf
ac
e:
G
O
rc
a,
C
+
+
,

Ja
va
,P

yt
ho
n,

PH
P,
C
#,

an
d
V
is
ua
lB

as
ic

A
sy
nc
hr
on
iz
ed

M
ir
o

M
ap
pi
ng
,l
oc
al
iz
at
io
n,

pa
th

pl
an
ni
ng

,c
ol
lis
io
n

av
oi
da
nc
e,
sp
ee
ch

re
co
gn
iti
on
,v

is
io
n

pr
oc
es
si
ng

R
ob
us
tn
es
s

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e/
W
in
do
w
s,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
gr
ap
hi
ca
l

in
te
rf
ac
e:
Q
tG

U
I,
C
+
+

A
sy
nc
hr
on
iz
ed

(E
ve
nt
-d
ri
ve
n
co
nt
ro
l)

M
IR

A
L
oc
al
iz
at
io
n,
m
ap
pi
ng
,

pa
th

pl
an
ni
ng

,c
ol
lis
io
n

av
oi
da
nc
e,
vi
si
on

pr
oc
es
si
ng

Se
cu
ri
ty
,r
ob
us
tn
es
s,

re
lia

bi
lit
y,
fa
ul
t

to
le
ra
nc
e,
re
al
-t
im

e
su
pp
or
t

Im
pe
ra
tiv

e,
no
de
-b
as
ed

L
in
ux
/W

in
do
w
s,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
gr
ap
hi
ca
l

in
te
rf
ac
e:
Q
tG

U
I,
C
+
+
,

Py
th
on
,J
av
aS

cr
ip
t,
et
c.

A
sy
nc
hr
on
iz
ed

O
pe
nR

D
K

M
ap
pi
ng
,l
oc
al
iz
at
io
n,

pa
th

pl
an
ni
ng
,

na
vi
ga
tio

n,
co
lli
si
on

av
oi
da
nc
e,
vi
si
on

pr
oc
es
si
ng

R
ob
us
tn
es
s

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e,
lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

U
SA

R
-

Si
m
/S
ta
ge
/G

az
eb
o,

C
+
+

A
sy
nc
hr
on
iz
ed

Middleware for Multi-robot Systems 655

Ta
bl
e
2

(c
on
tin

ue
d)

M
id
dl
ew

ar
e

Fu
nc
tio

n
fe
at
ur
es

N
on
fu
nc
tio

n
fe
at
ur
es

Pr
og
ra
m
m
in
g

ab
st
ra
ct
io
n

In
fr
as
tr
uc
tu
re

fe
at
ur
es

C
oo
rd
in
at
io
n
fe
at
ur
e

M
A
R
IE

M
ap
pi
ng
,l
oc
al
iz
at
io
n,

pa
th

pl
an
ni
ng

,c
ol
lis
io
n

av
oi
da
nc
e,
vi
si
on

pr
oc
es
si
ng

R
ob
us
tn
es
s

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e,
lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

St
ag
e/
G
az
eb
o,

gr
ap
hi
ca
l

in
te
rf
ac
e:
lo
gv

ie
w
er
,

C
+
+

A
sy
nc
hr
on
iz
ed

U
rb
i

V
is
io
n
pr
oc
es
si
ng

N
on
e

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e/
W
in
do
w
s/
M
ac

O
S
X
,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

W
eb
ot
s,
gr
ap
hi
ca
l

in
te
rf
ac
e:
U
rb
iL
ab
,C

+
+
,

Ja
va
,M

A
T
L
A
B
,P

yt
ho
n,

et
c.

B
ot
h
sy
ch
ro
ni
ze
d
an
d

as
yc
hr
on
iz
ed

M
R
D
S

Sp
ee
ch

re
co
gn
iti
on
,

vi
si
on

pr
oc
es
si
ng

Se
cu
ri
ty
,f
au
lt
to
le
ra
nc
e,

ro
bu
st
ne
ss

D
ec
la
ra
tiv

e,
en
se
m
bl
e-
ba
se
d

W
in
do
w
s,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

V
is
ua
lS

im
ul
at
io
n

E
nv
ir
on
m
en
t,
gr
ap
hi
ca
l

in
te
rf
ac
e:
V
is
ua
l

Pr
og
ra
m
m
in
g
L
an
gu
ag
e,

C
#,

V
is
ua
lB

as
ic
,a
nd

Ir
on

Py
th
on

A
sy
nc
hr
on
iz
ed

656 Y. Sahni et al.

Ta
bl
e
2

(c
on
tin

ue
d)

M
id
dl
ew

ar
e

Fu
nc
tio

n
fe
at
ur
es

N
on
fu
nc
tio

n
fe
at
ur
es

Pr
og
ra
m
m
in
g

ab
st
ra
ct
io
n

In
fr
as
tr
uc
tu
re

fe
at
ur
es

C
oo
rd
in
at
io
n
fe
at
ur
e

R
ob
oC

om
p

M
ap
pi
ng
,l
oc
al
iz
at
io
n,

et
c.
re
us
ab
le
fr
om

ot
he
r

pr
oj
ec
ts
su
ch

as
Pl
ay
er
,

O
rc
a,
an
d
R
O
S

N
on
e

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e/
W
in
do
w
s/
M
ac

O
S
X
,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

St
ag
e/
G
az
eb
o,

gr
ap
hi
ca
l

in
te
rf
ac
es
:

m
an
ag
er
C
om

p,
m
on
ito

rC
om

p,
et
c.
,

C
+
+
,J
av
a,
Py

th
on
,

R
ub
y,
C
#,
PH

P,
an
d

O
bj
ec
tiv

e
C

A
sy
ch
ro
ni
ze
d

R
O
S

M
ap
pi
ng
,l
oc
al
iz
at
io
n,

et
c.
re
us
ed

fr
om

ot
he
r

pr
oj
ec
ts
su
ch

as
Pl
ay
er
,

O
pe
nR

A
V
E
,e
tc
.

R
ea
l-
tim

e
su
pp

or
t,

ro
bu
st
ne
ss

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e/
W
in
do
w
s

(p
ar
tia

l)
/M

ac
O
S
X
,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

St
ag
e/
G
az
eb
o,

gr
ap
hi
ca
l

in
te
rf
ac
es
:r
xp

lo
t,

rx
gr
ap
h,

C
+
+
,P

yt
ho
n,

O
ct
av
e,
an
d
L
IS
P

A
sy
nc
hr
on
iz
ed

W
U
R
D
E

L
oc
al
iz
at
io
n,
co
lli
si
on

av
oi
da
nc
e,
vi
si
on

pr
oc
es
si
ng

R
ob
us
tn
es
s

D
ec
la
ra
tiv

e,
no

de
-b
as
ed

U
ni
x-
lik

e,
lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

St
ag
e,
gr
ap
hi
ca
l

in
te
rf
ac
e:
R
ID

E
,C

+
+

A
sy
nc
hr
on
iz
ed

Middleware for Multi-robot Systems 657

Ta
bl
e
2

(c
on
tin

ue
d)

M
id
dl
ew

ar
e

Fu
nc
tio

n
fe
at
ur
es

N
on
fu
nc
tio

n
fe
at
ur
es

Pr
og
ra
m
m
in
g

ab
st
ra
ct
io
n

In
fr
as
tr
uc
tu
re

fe
at
ur
es

C
oo
rd
in
at
io
n
fe
at
ur
e

O
PR

oS
M
ap
pi
ng
,l
oc
al
iz
at
io
n,

pa
th

pl
an
ni
ng

,c
ol
lis
io
n

av
oi
da
nc
e,
vi
si
on

pr
oc
es
si
ng

Fa
ul
tt
ol
er
an
ce
,

ro
bu
st
ne
ss
,r
ea
l-
tim

e
su
pp
or
t(
un
de
r

de
ve
lo
pm

en
t)

D
ec
la
ra
tiv

e,
no

de
-b
as
ed

L
in
ux
/W

in
do
w
s,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

O
PR

oS
Si
m
ul
at
or
,

R
ob
ot

B
ui
ld
er
,g

ra
ph
ic
al

in
te
rf
ac
e:
C
om

po
ne
nt

C
om

po
se
r,
C
+
+
,J
av
a

A
sy
nc
hr
on
iz
ed

(e
ve
nt
-d
ri
ve
n)

R
T-
M
id
dl
ew

ar
e

M
ap
pi
ng

,l
oc
al
iz
at
io
n,

pa
th

pl
an
ni
ng

,c
ol
lis
io
n

av
oi
da
nc
e,
vi
si
on

pr
oc
es
si
ng

R
ea
l-
tim

e
su
pp

or
t,

ro
bu
st
ne
ss

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e/
W
in
do
w
s,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

St
ag
e,
gr
ap
hi
ca
l

in
te
rf
ac
e:

R
T
Sy

st
em

E
di
to
r,
C
+
+
,

Ja
va
,a
nd

Py
th
on

B
ot
h
sy
nc
hr
on
iz
ed
,a
nd

as
yn
ch
ro
ni
ze
d

A
SE

B
A

M
ap
pi
ng
,l
oc
al
iz
at
io
n,

pa
th

pl
an
ni
ng

,c
ol
lis
io
n

av
oi
da
nc
e,
vi
si
on

pr
oc
es
si
ng

R
ea
l-
tim

e
su
pp

or
t,

ro
bu
st
ne
ss

Im
pe
ra
tiv

e,
no
de
-b
as
ed

U
ni
x-
lik

e/
W
in
do
w
s,

lo
gg
in
g/
de
bu
gg
in
g

fa
ci
lit
ie
s,
si
m
ul
at
or
:

E
nk
iS

im
ul
at
or
,

gr
ap
hi
ca
li
nt
er
fa
ce
:

A
SE

B
A
ID

E
ba
se
d
on

Q
t4
,A

SE
L
(A

SE
B
A

E
ve
nt

Sc
ri
pt
in
g

L
an
gu
ag
e)

A
sy
nc
hr
on
iz
ed

(E
ve
nt
-b
as
ed
)

658 Y. Sahni et al.

Since Player is freely available as open-source, many improvements have been
done since the original version [32]. Some major improvements related to simplicity
and flexibility have been done in [22]. Player has been divided into two parts, the
core and transport layer. Separation of Player core from transport layer provides
more flexibility. Original version [32] was a TCP-based device server, but now it can
support many other configurations. Other transport layers, or no transport layer, can
also be used. Player is supported on most of the UNIX flavors and onWindows using
Cygwin.

Orca: Orca6 is a framework that can be used for the development of component-
based robotic systems. Complex robotic systems can be developed by piecing
together the components provided by Orca. The main objective of Orca is to promote
software reuse. Orca does not impose any constraint on the component granularity
(size of modules used to make up the complete system), system architecture (any
architecture such as centralized, blackboard, strictly-layered, strictly-decentralized,
or mixed can be implemented), interfaces, and component architecture [56].

Orca uses InternetCommunicationEngine (Ice) for communicationbetween inter-
faces [56]. Slice, a specification language for Ice, is used for defining interfaces.
There are many Ice services such as IceGrid Registry, IceGrid Node, IceBox, and
IceStorm which are extensively used in Orca. IceGrid Registry is a centralized reg-
istry for naming service. IceGrid Node is a software activation service. IceBox is an
application server that is responsible for starting and stopping of application com-
ponents. Application components are deployed as a dynamic library which makes
them easy to deploy and administer, and also optimizes the communication between
components within the same application server. IceStorm is an event service which
forward the messages received from a server to multiple clients without marshaling
or demarshalling them. IceStorm can alsoweaken client dependencies by configuring
multiple threads.

Orca also provides a library called libOrcaIce which provided simplified API that
can be used for development of robotic applications [56]. This lowers the barrier
for developers as the majority of functionalities used for robotic applications are
provided by Orca library. To allow the use of Orca on wider platforms, CMake is
used to build system. Orca can be used on different operating systems including
Linux, several flavors of Windows, and Mac OS X. Programming languages that are
supported are C++, Java, Python, PHP, C#, and Visual Basic. Also, Ice Client and
server are language independent so they can be implemented in any programming
language.

Miro: Miro7 is a three-layered middleware for mobile robot applications which
is designed and implemented using object-oriented approach [92]. The three lay-
ers from bottom to top are MIRO device layer, MIRO service layer, and MIRO class
framework layer. The higher layers access lower layers using interfaces.MIROdevice
layer is a platform dependent layer that provides classes to interface and abstracts
the low-level sensors and actuators within a robot. The classes also allow access to

6http://orca-robotics.sourceforge.net/index.html.
7https://sourceforge.net/projects/miro-middleware.berlios/.

http://orca-robotics.sourceforge.net/index.html
https://sourceforge.net/projects/miro-middleware.berlios/

Middleware for Multi-robot Systems 659

low-level hardware resources using ordinary method calls. MIRO service layer pro-
vides service abstraction for sensors and actuators with event-based communication
by using CORBA interface definition layer (IDL). The services are implemented as
network transparent CORBA objects which enable language and platform indepen-
dence. Sensors and actuators are presented in a platform-independent manner by the
use of classes in this layer. MIRO class framework layer provides functional modules
such as mapping, localization, behavior generation, logging and visualization facil-
ities, etc. which are extensively used for mobile robotic application development.
Besides providing common functionalities for application development, MIRO class
framework also provides functionality for experimental evaluation.

All MIRO functionalities have been implemented in C++. The communication
mechanism is developed usingTAOpackagewhich is an implementation ofCORBA-
based on adaptive communication engine (ACE). Client–server model has been used
for communication between objects. MIRO implementation includes three types of
clients (sample client, test client, and monitoring client) for testing and evaluation of
service functionalities. Apart from event-driven communication between services,
synchronous and asynchronous communications are also used.

MIRA: MIRA8 is a decentralized middleware that supports the development
of fully distributed robotic applications. The objective of MIRA is to support the
development of real-world applications; therefore, mechanisms have been used to
address issues such asmemory consumption, latency, fault tolerance, and robustness.
Each application is composed of different processes that can be located on different
machines. Each process further consists of multiple software modules called units
which implement algorithms to solve any task. In case multiple units are present in
a single process, then each of the units runs in its own thread.

MIRA is written in C++ but it can be interoperable with other programming
languages such as Java, Python, etc. Reflection and serialization are two concepts
that have been widely used in implementing different mechanisms in MIRA. MIRA
uses a reflect method to reflect and serialize any arbitrary class since reflection
and serialization are not supported natively by C++. This mechanism enables the
complete use of object-oriented programming paradigm. This allows transport of not
only simple data but also complex objects including robot models, GUI components,
etc. to the remote side. Use of serialization makes MIRA interoperable with other
programming languages andmiddleware. Serialization formats such as XML, JSON,
and binary are currently supported by MIRA.

Two communication mechanisms are supported by MIRA, message passing, and
remote procedure calls (RPC). There is no central server used in MIRA for name
look or other management tasks. MIRA supports robustness and reliability by using
peer-to-peer architecture for communication between different processes. Commu-
nication between units and message exchange is done using named channels. Chan-
nels allow one-to-one, one-to-many, and many-to-many communication [27]. MIRA
supports autonomous handling of multi-threading and data synchronization. Slot-
based communication avoids unnecessary copying and blocking of data when there

8http://www.mira-project.org/joomla-mira/.

http://www.mira-project.org/joomla-mira/

660 Y. Sahni et al.

is simultaneous read andwrite access. Slot-based communication also helps in reduc-
ing memory usage. MIRA reduces latency of RPC by using futures, which act as
proxy for the result of asynchronous calls. MIRA is currently supported for Linux
and Windows operating system.

OpenRDK: OpenRDK9 is a modular software framework designed to develop
distributed and mobile robotic applications. The objective of OpenRDK is to support
modularity and code reusability of software to enable easier and faster development of
robotic application. The main entity of the software framework is a software process
called agent. Single thread inside an agent process is called module, which can be
loaded and started dynamically once agent is running [17]. An agent configuration
is a list of modules that are to be loaded and executed, their interconnection layout,
and value of their parameters. All modules publish the data they want to share in
a repository. Variables published by modules, i.e., input, output, and parameter, are
called properties. Each property is assigned to a globally unique URL address. These
URL addresses enable modules to transparently access modules within the same
agent or remotely. There are some special queue objects that are also addressed
using global URL just like other local properties.

OpenRDK uses multiple processes with multiple threads. Since information shar-
ing between modules is done with the help of URL, it introduces some coupling
between modules which adversely affects the modularity of the whole system. To
resolve this issue, property links are specified in configurationfile that allowsmodules
to refer to different names for the properties, thus avoiding any coupling between
modules. While sharing of information within the same agent can be done using
repository, inter-agent information sharing can be done by either property sharing or
message sending. OpenRDK also contains RConsole which is a graphical tool used
for remote inspection and management of modules. Other modules for connecting
to simulators or for logging are also provided by OpenRDK. OpenRDK is written
in C++. It can run on a UNIX-like operating system. OpenRDK does not focus on
platform independence of the software framework.

MARIE:Mobile andAutonomousRobotics IntegrationEnvironment (MARIE)10

is a distributed component-basedmiddleware framework designed to develop robotic
applications by enabling integration of new and existing systems [23]. The objec-
tive of MARIE is to enable software reuse, support multiple sets of concepts, and
support a wide range of communication protocols, mechanism, and robotic stan-
dards. MARIE supports multiple levels of abstraction by utilizing layered software
architecture consisting of three layers, which are core layer, component layer, and
application layer. Core layer is the lower level layer that provides tools for low-level
functionalities such as communication, distributed computation, data handling, and
many low-level operating system functions. Component layer implements a frame-
work to add components and support domain-specific concepts. Application layer
consists of tools required to build robotic applications from available components.

9http://openrdk.sourceforge.net/index.php?n=Main.HomePage.
10http://marie.sourceforge.net/wiki/index.php/Main_Page.

http://openrdk.sourceforge.net/index.php?n=Main.HomePage
http://marie.sourceforge.net/wiki/index.php/Main_Page

Middleware for Multi-robot Systems 661

MARIE usesmediator interoperability layer (MIL) to act as amediator for interac-
tion with each component independently. MIL is implemented as virtual space where
components can interact with each other using a common language. This design leads
to the decoupling between components, increases reusability, interoperability, and
reduces the complexity of managing a large number of centralized components. MIL
is composed of four types of components, which are application adapter (AA), com-
munication adapter (CA), application manager (AM), and communication manager
(CM). AA is responsible for interfacing applications withMIL. CA is responsible for
communication between components by adapting different communication mecha-
nisms. AM is responsible for management of all components in the system, and CM
is responsible for management of communication between AAs.

MARIE has been written in C++. MARIE does not focus on any specific com-
munication mechanism; rather it uses communication abstraction framework, called
port, for provided communication protocols and component interconnection. It uses
adaptive communication environment (ACE) library to implement for transport layer
and low-level operating system function implementation.

Urbi: Urbi11 is a software platform for developing robotic applications. Urbi is
based on an event-driven scripting language, URBISCRIPT, and distributed compo-
nent architecture [8].URBISCRIPT is designednot only to create robotic applications
and controlling robots but also it is the foundation of the communication protocol
based onwhich client/server architecture for Urbi software platform is built.Multiple
clients can interact concurrentlywith a server bymeans ofURBISCRIPT.Urbi server
which lies above the operating system is responsible for abstracting low-level hard-
ware details. Urbi platform interacts with underlying operating system using engines
which are also responsible for running the Urbi server. Urbi kernel is another part
of the Urbi server that provides primitive services including urbi virtual machine
(UVM). URBISCRIPT running on top of urbi virtual machine (UVM) is responsible
for providing CPU independence.

Diversity in robots is addressed by the use of UObject architecture. UObject
enables communication between low-level and high-level components, and their
interaction with URBISCRIPT. Complex data flowing betweenmultiple components
can also be handled by the use of UObject API. UObject can be either plugged into
the server or also used as standalone remote process. Besides low-level abstraction
provided by UObject, high-level abstraction is also provided by using Urbi naming
standard. These abstractions enable development of portable applications.

There are many graphical applications such as UrbiLive and UrbiLab provided by
Urbi platform to enable easy interaction with robots. UrbiLive is a graphical editor
useful for composing and chaining actions based on external events. UrbiLab is a
graphical tool used as Urbi server inspector and effector. UrbiLab can also be used
for remote control of robots. Urbi is open to programming environments such as Java,
MATLAB, and Python. Although Urbi platform is based on C++ and URBISCRIPT,
it is not necessary to know these languages to program robots and components.

11http://www.gostai.com/products/urbi/.

http://www.gostai.com/products/urbi/

662 Y. Sahni et al.

Microsoft Robotics Developer Studio (MRDS): Microsoft Robotics Developer
Studio (MRDS)12 is a service-driven robotic studio that follows representational state
transfer (REST) pattern [40]. Decoupled software services are used for interaction
with robots. Use of decoupled services enables modularity and code reuse. Services
are used for both robot interaction and implementation of functionalities such as
web-based error reporting, wireless communication, etc. The interaction between
services is done by the use of XML-based configuration manifest file. Manifest file
enables start-up of services byMRDS by defining partnership between services. The
partnership of services also enables registration between services, message passing,
and fault notification. Partnership and distributed messaging are enabled by the use
of software library called Decentralized Software Services Protocol (DSSP). MRDS
also uses another software called Coordination and Concurrency Runtime (CCR)
for handling state updates and message processing. CCR also enables abstraction
of complex functionalities such as memory locking and communication between
various operating systems. There are two other main components in MRDS, which
are visual programming language (VPL) for graphical interface and visual simulation
environment (VSE) for running simulation.

There are some utility services provided by MRDS. A control panel enables
the user to view all currently running services and links between them. There is a
message logging service that runs built-in filtering to provide a debugging view of the
system. Resource diagnostic service is also provided to enable the developer to obtain
additional debugging andperformance evaluation information.A3Dsimulator, based
on Microsoft DirectX technology, is also included in MRDS. The simulator is used
for both graphics and physics simulations. MRDS is implemented in .NET. Services
inMRDS can be written in any .NET compatible language. Service implementations
have been done in C#, Visual Basic, and Iron Python. Simple object access protocol
(SOAP) interface can also be used to interface services with other programming
interfaces. MRDS is a popular proprietary middleware that only supports Windows
platform.

RoboComp: RoboComp13 is a component-oriented robotic framework that
focuses on ease of use and rapid development of robotic applications [57]. Robocomp
is based on Ice which is extended further by the use of different classes and tools.
Components used in Robocomp consist of three main elements, which are server
interface, worker class, and proxies that are used for communicating with other
components. Worker class implements the core functionality of components. Server
interface and worker class run in different threads to avoid delays. There is another
optional common interface called CommonBehavior that is used for accessing the
parameters and status of components.

Different tools provided byRoboComp are used for providing functionalities such
as monitoring, management, debugging, simulation, etc. These tools are as follows:

12https://www.microsoft.com/en-us/download/details.aspx?id=29081.
13http://robocomp.github.io/website/.

https://www.microsoft.com/en-us/download/details.aspx?id=29081
http://robocomp.github.io/website/

Middleware for Multi-robot Systems 663

(a) componentGenerator: This tool makes the task of the programmer easier by
automatically generating the skeleton of the new component and even the code
pieces for the programmer.

(b) managerComp: managerComp is a graphical tool that can be used for building
and running the system. Both local and remote components are managed can be
managed by use managerComp. This tool also makes use of CommonBehavior
interface to visually access the parameters of the components.

(c) monitorComp: This tool is used for connection and monitoring of components.
monitorComp provides a graphical interface for testing the components in an
easier way. Testing is done either by the use of custom monitoring code or
template available to test HAL components.

(d) replayComp: This tool records the output of components to replay them. This is
also a graphical tool that is useful for debugging purposes.

(e) Simulation Support: RoboComp makes use of two widely used open-source
simulators, Stage and Gazebo, for simulation purpose.

(f) loggerComp: This tool is used for analyzing the execution and interaction of
components. This tool also provides a graphical interface to display different
types of information.

RoboComp can be deployed on any computer system supporting Ice. Platforms
supported by RoboComp are Linux, Windows, Mac OS X, Android, and iPhone.
Any programming language that supports Ice can be used for RoboComp, which
includes C++, Java, Python, C#, Ruby, PHP, and Objective-C.

ROS: ROS14 is a modular framework for developing robotic systems [74]. ROS
provides a structured communication layer above operating system of the host. Mul-
tiple processes running in a system are connected using peer-to-peer topology instead
of using a central server. ROS is language-neutral. A simple and language-neutral
interface definition language (IDL) is used to provide support for cross-language
development. All the functionalities in ROS are developed using small modules. Use
of modular architecture reduces complexity and enhances stability. All the driver
and algorithm development is done in standalone libraries which are independent
of ROS. Small executables are created inside the source code which exposes library
functionality to ROS. This mechanism makes code reuse easier and helps in unit
testing.

There are some fundamental concepts that have been defined for ROS implemen-
tation, which are nodes, messages, topics, and services. A system is composed of
multiple nodes which are processes that perform computation [74]. Communica-
tion between nodes is using messages. A message can consist of other messages,
or array or messages. Topic-based publish-subscribe communication paradigm has
been used. To enable request/response communication, the concept of services has
been defined. There can be multiple simultaneous publishers and/or subscribers for
a single topic, and a single node can publish and/or subscribe to multiple topics.

ROS follows tool-based design, and thus there are many tools provided with ROS
for different scenarios. ROS uses rconsole library to enable logging and monitoring

14http://www.ros.org/.

http://www.ros.org/

664 Y. Sahni et al.

of distributed system. Packaging functionality is enabled by the use of roslaunch
tool. Collaborative development is enabled by the use of utilities such as rospack and
rosbash. ROS uses a utility named rostopic for filtering messages. There are tools
such as rxplot and rsgraph that are used for generating plots and graphs. ROShas been
designed to be language-neutral. ROS supports four different types of programming
languages, which are C++, Python, Octave, and LISP.

WURDE: WURDE (Washington University Robotics Development Environ-
ment) is a modular middleware for developing robotic systems [37]. The objective of
WURDE is to develop middleware that is easy to use even for beginners. WURDE
provides set of abstraction and utilities to achieve this objective. Four layers of
abstraction are provided by WURDE, which are communication, interface, appli-
cation, and system. WURDE does not use specific communication protocol instead
the communication layer defines types and methods for moving data to communica-
tion adapter [28]. Interface layer describes the data required by each type of robot.
Interfaces are described using XML. Application layer provides API for controlling
different aspects of applications. System layer is topmost abstraction layer which is
used for connecting different applications.

WURDE does not use any specific software architecture; instead, the robotic sys-
tem is developed as system of small interconnected modules. WURDE uses asyn-
chronous communication for communication between modules. One of the modules
provided byWURDE is a tasking and control interface called Robot Interaction Dis-
play Environment (RIDE). RIDE enables single user to control and task multiple
robots at same time. Implementation of WURDE is not yet complete as there are
many software packages that are still needed to be developed.

OPRoS:Openplatform for robotic services (OPRoS)15 is a distributed component-
based platform for developing robotic systems [41]. The objective of OPRoS is
to enable full development of robot software by providing required developmen-
tal tools, middleware services, component execution engine, simulation environ-
ment, and other utilities. Robotic service in OPRoS is composed of loosely coupled
components. There are two types of components, atomic component and composite
component. Components can have different granularities. Communication between
components is done by the use of ports on each specific component. Each com-
ponent can have multiple ports that are used for transmission of different types of
information such as method invocation, data, and events. Components in OPRoS can
support either of the three different types of execution modes, which are periodic,
nonperiodic, and passive.

All the information related to components such as port types, execution semantics,
properties, and other relevant information is stored in an XML file called component
profile [41]. There are other XML profiles such as service profile, data profile, and
application profile. Component and application profile is used by communication
execution engine for execution and management of components. Component exe-
cution engine provides abstractions to developers by hiding low-level details such
as thread management, resource allocation, and other functions offered by the oper-

15http://www.opros.or.kr/display/opros/OPRoS+Wiki.

http://www.opros.or.kr/display/opros/OPRoS+Wiki

Middleware for Multi-robot Systems 665

ating system. Component execution engine also provides a self-configurable fault
tolerance module for detecting faults and anomalies.

OPRoS also provides development tools for authoring atomic components and
composing components. Component authoring tool, as the name suggests, is used for
authoring atomic components. This tool also supports debugging, execution control,
and monitoring of atomic components. Component composer is used for composing
components to develop the robotic application. Component composer can also be
used for remote control and monitoring of multiple component execution engines
concurrently. All these tools can be supported on any operating systemwhere eclipse
is installed. OPRoS currently supports both Windows and Linux operating systems.

RT-Middleware: RT (Robot Technology)-Middleware16 serves as a distributed
component-basedmiddleware for developing robotic systems [4]. It studiesmodular-
ization of robotic elements and proposed RT-Components as the basic software unit
based on Common Object Request Broker Architecture (CORBA). RT-middleware
supports the construction of various networked robotic systems by the integration of
various RT-Components. An open-source implementation called OpenRTM-aist [5]
was developed for feedback from the robotic research community.

An RT-Component is composed of a component object as the main body, activity
as the main process unit, and input ports (InPorts) and output ports (OutPorts) as
data stream ports. The activity serves as a controller of the device and processes the
designed tasks continuously. The activity has eleven states, and each state is possible
to have three methods called entry, do, and exit. These three methods will be called
automatically on entry to, being in, and on exit from the state, respectively. The
transition of the states is uniform for all RT-Components. Hence, developers may
implement the methods for each state to build a new RT-Component.

The InPorts and OutPorts take advantages of publisher/subscriber model. On the
one hand, an InPort serves as a subscriber and may subscribe several OutPorts. It
also provides a common method called InPort::put to allow data to be written.
On the other hand, an OutPort serves as a publisher and write data to those InPorts
who have subscribed it by using the method of InPort::put. It also provides
several subscription types, e.g., Once, Periodic, and Triggered.

The RT-Middleware provides several methods for integrating RT-Components.
These methods include assembly GUI tool, script language, XML file, other RT-
Components, and other application programs. By integration of RT-Components,
applications can be built from bottom to up. Such applications include network
distributed monitoring system [42] and intelligent home service robotic system [43].

ASEBA: ASEBA17 is an event-based middleware supporting distributed control
and efficient resources exploitation among multiple microcontrollers in a robot [52,
55]. The ASEBA is specially designed for robots with more than one microcontroller
sharing a bus for communication.

The ASEBA abandons traditional architecture where the main microcontroller
controls all the other microcontrollers and manages all data transfers. As an event-

16http://openrtm.org.
17http://mobots.epfl.ch/aseba.php.

http://openrtm.org
http://mobots.epfl.ch/aseba.php

666 Y. Sahni et al.

based middleware, it utilizes multi-master bus in which all microcontrollers can
initiate data transfers. The multi-master bus enables asynchronous messages, called
events, transferred between microcontrollers. Without control of a centralized main
processor, loadonbus is significantly reduced.Also, themain process canget released
from processing messages and be dedicated for CPU-intensive tasks such as path
planning and image processing.

A scripting language called AESL (ASEBA Event Scripting Language) is pro-
vided to describe even emission and reception policy in ASEBA. A piece of AESL
program can be compiled into bytecode using the designed compiler and ran on the
implemented virtual machine. The compiler, together with a script editor and a dis-
tributed debugger, forms into the integrated development environment for ASEBA.
The virtual machine is lightweight with less than 1000 lines of C program including
debugging logic.

TheASEBAhas been successfully deployed in the handbot for the task of climbing
a shelf and in the marXbot to improve the performance of behaviors in terms of a
polling-based approach. The ASEBA has been utilized for the purpose of education
[53] and managing a collection of single-microcontroller robots [54].

6 Future Directions and Challenges

In this section, we have given some observations regarding future directions and
challenges forMRSmiddleware. These observations have beenmade after reviewing
existing middleware for MRS. We discuss which design goals have been commonly
addressed by existing middleware and which ones need more research effort. Since
design of middleware is dependent on hardware, it is important to develop multi-
robot systems, which are cheaper, smaller, and have better sensing, processing, and
communication technologies. Due to the limitation in technology, each robot inMRS
has very limited processing power, storage, communication capability, and battery
capacity. These resource limitations make it difficult to develop sophisticated mid-
dleware for MRS. One of the major research directions is to develop lightweight
middleware that can be used to enable different design goals. Another challenging
issue arises due to the heterogeneity of robots. MRS work by collaborating and
coordinating with each other, however, heterogeneity of robots and communication
protocols makes it a challenging task. Collaboration involves partitioning and dis-
tribution of complicated tasks among multiple robots; therefore, middleware should
provide lightweight algorithms for task partitioning and management. Scalability
will be another major challenge in coming future. Middleware should be designed
to support scalability and dynamic configuration of system.

Middleware evaluation is a major part in analyzing the middleware. Middleware
is usually evaluated by quantifying the system parameters based on some application
example; however, there are some issues with this approach. Application examples
that are used for middleware evaluation only focus on some specific system require-
ments which means evaluation depends highly on the application example being

Middleware for Multi-robot Systems 667

used [69]. Besides, different middleware architectures are developed for different
applications, and thus it may not be the best criteria to evaluate a middleware based
on some specific parameters. Another issue with middleware evaluation is that it is
difficult to quantify the usability of middleware [69]. Several mechanisms such as
the use of a questionnaire, number of lines of code, or time to develop the system
have been used to determine whether middleware is easy to use or not but, this is not
very efficient. Middleware evaluation is currently a challenging issue for researchers
and developers which requires more research efforts.

Robot software architecture can usually be classified into three types, which are
object-oriented robotics, component-based robotics, and service-driven robotics [1].
Most middleware examples that have been discussed in Sect. 5 use small modules or
components for developing a robotic system. Very few middleware, in general, fol-
low monolithic approach for developing robotic software platform. It is preferred to
use small modules for system development as it reduces the complexity of the whole
system and enables reusability. Component-based approach is a common choice for
building middleware for MRS. Orca, MARIE, Urbi, Robocomp, OPRoS, and RT-
Middleware follow component-based architecture for developing middleware. Miro
and Mira follow object-oriented paradigm, and MRDS is a service-driven middle-
ware that follows REST pattern. All the other remaining middlewares such as ROS,
WURDE, OpenRDK, Player, etc. use modular architecture. Out of all these middle-
ware architectures, ROS and Player are most popular among robotic system devel-
opers. Although component- and modular-based approaches offer many benefits, a
challenging issue is to integrate different components which results in issues related
to communication, interoperability, and configuration [65]. Currently, a new trend is
emerging in robotics community to use model-driven engineering for robotics soft-
ware [1]. SmartMDSD Toolchain [89] is a toolchain based on model-driven software
development approach that provides an integrated modeling environment to create
an overall workflow for robotics software development.

We described some design goals for middleware in Sect. 3; however, we observed
that each middleware is usually designed focusing on some specific goals. It is very
difficult to achieve all design goals simultaneously [86]. Future work in MRS mid-
dleware should consider satisfying multiple design goals to enable multidimensional
benefits. Out of all the design goals, flexibility and software reusability is the most
common objective for existing middleware. Software reusability is enabled by the
use of modular or component-based middleware architectures. Second observation
is that most of the middleware are freely available as open source. This is usually
done to enable debugging of the software and make it more popular. Since hetero-
geneity is a major issue in robotic system development, most middleware tries to
provide some programming abstractions and make their system platform and lan-
guage independent. Linux is the first choice of operating system that is supported by
most middleware, Windows being the second, and there are some middlewares such
as Orca and RoboComp that support Mac OS too. Most middlewares provide some
graphical interface that enables management and monitoring of the robotic system.
Orca, OpenRDK, MARIE, Urbi, MRDS, RoboComp, ROS, and OPRoS are some
middleware examples that provide specific management and monitoring tools. Apart

668 Y. Sahni et al.

from graphical interfaces, other mechanisms can also be used for management and
monitoring purposes.

Although the features currently supported by existingmiddleware help in decreas-
ing the complexity and provide some other useful features, there are many design
goals which have not been fully addressed. One such design goal is collaboration
among multiple robots which is currently achieved by existing middleware as they
are usually modular and support distributed control. However, existing middleware
does not focus much on providing some specific abstractions or tools to facilitate
collaboration. A similar case is observed for dynamic resource discovery and con-
figuration where specific tools and abstractions are not provided to enable dynamic
configuration of system. Most middlewares do not provide explicit facilities to make
the system more robust. Very few middlewares provide explicit fault tolerance capa-
bilities. Out of all the middleware discussed, OPRoS, MIRA, and MRDS explicitly
consider fault tolerance. Real-time support is another design goal which has not
been addressed by many middleware. RT-Middleware, MIRA, ROS, and ASEBA
are among the few middlewares that provide some form of real-time support. RT-
Middleware provides some support for real-time processing,MIRAprovides amech-
anism to minimize latency, ROS enables real-time inspection and monitoring of any
variable, and ASEBA also provides real-time support. Real-time support is essential
for many robotic applications and thus, more research efforts are required to address
this issue. Most middlewares currently do not focus much on supporting Quality of
Service (QoS) requirements such as security, reliability, etc. Security and privacy
are important concerns as MRSs are used for critical applications such as battlefield
surveillance, explorationmissions, etc.Very fewmiddlewares provide securitymech-
anism. Since MRSs are distributed in nature, it is challenging to develop distributed
security algorithm.Although existingmiddlewares are developed to integrate sensors
and actuators within the robots, integration with other technologies such as cloud
computing and IoT has not been taken into much consideration.

Acknowledgements This work was supported by the ANR/RGC Joint Research Scheme [grant
number A-PolyU505/12], the NSFC Key Grant [grant number 61332004], and the NSFC/RGC
Joint Research Scheme [grant number N-PolyU519/12].

References

1. Ahmad, A., Babar, M.A.: Software architectures for robotic systems: a systematic mapping
study. J. Syst. Softw. 122, 16–39 (2016)

2. Akyildiz, I.F., Su,W., Sankarasubramaniam,Y., Cayirci, E.:Wireless sensor networks: a survey.
Comput. Netw. 38(4), 393–422 (2002)

3. Alimisis, D.: Educational robotics: open questions and new challenges. Themes Sci. Technol.
Educ. 6(1), 63–71 (2013)

4. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.K.: Rt-middleware: distributed com-
ponent middleware for rt (robot technology). In: 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3933–3938. IEEE (2005)

Middleware for Multi-robot Systems 669

5. Ando, N., Suehiro, T., Kotoku, T.: A software platform for component based rt-system develop-
ment: Openrtm-aist. In: International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, pp. 87–98. Springer (2008)

6. Arai, T., Pagello, E., Parker, L.E.: Editorial: advances in multi-robot systems. IEEE Trans. Rob.
Autom. 18(5), 655–661 (2002)

7. Arbuckle, D., Requicha, A.A.: Self-assembly and self-repair of arbitrary shapes by a swarm of
reactive robots: algorithms and simulations. Auton. Robots 28(2), 197–211 (2010)

8. Baillie, J.C., Demaille, A., Hocquet, Q., Nottale, M., Tardieu, S.: The URBI universal platform
for robotics. In: First InternationalWorkshop on Standards and Common Platform for Robotics
(2008)

9. Beasley, R.A.: Medical robots: current systems and research directions. J. Robot. 2012 (2012)
10. Benitti, F.B.V.: Exploring the educational potential of robotics in schools: a systematic review.

Comput. Educ. 58(3), 978–988 (2012)
11. Broadbent, E., Stafford, R., MacDonald, B.: Acceptance of healthcare robots for the older

population: review and future directions. Int. J. Soc. Robot. 1(4), 319–330 (2009)
12. Bruce, J., Zickler, S., Licitra, M., Veloso, M.: Cmdragons: dynamic passing and strategy on a

champion robot soccer team. In: IEEE International Conference on Robotics and Automation,
2008. ICRA 2008, pp. 4074–4079. IEEE (2008)

13. Bruyninckx, H.: Open robot control software: the orocos project. In: IEEE International Con-
ference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 3, pp. 2523–2528.
IEEE (2001)

14. Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot explo-
ration. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings.
ICRA’00, vol. 1, pp. 476–481. IEEE (2000)

15. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a
survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)

16. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

17. Calisi, D., Censi, A., Iocchi, L., Nardi, D.: Openrdk: a modular framework for robotic software
development. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1872–1877. IEEE (2008)

18. Chalup, S.K., Murch, C.L., Quinlan, M.J.: Machine learning with AIBO robots in the four-
legged league of robocup. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(3), 297–310
(2007)

19. Chen, D., Varshney, P.K.: Qos support in wireless sensor networks: a survey. In: International
Conference on Wireless Networks, vol. 233, pp. 1–7 (2004)

20. Chitic, S.G., Ponge, J., Simonin, O.: Are middlewares ready for multi-robots systems? In:
International Conference on Simulation,Modeling, and Programming forAutonomousRobots,
pp. 279–290. Springer (2014)

21. Cianci, C.M., Raemy, X., Pugh, J., Martinoli, A.: Communication in a swarm of miniature
robots: the e-puck as an educational tool for swarm robotics. In: International Workshop on
Swarm Robotics, pp. 103–115. Springer (2006)

22. Collett, T.H., MacDonald, B.A., Gerkey, B.P.: Player 2.0: toward a practical robot program-
ming framework. In: Proceedings of the Australasian Conference on Robotics and Automation
(ACRA 2005), p. 145 (2005)

23. Cote, C., Brosseau, Y., Letourneau, D., Raïevsky, C., Michaud, F.: Robotic software integration
using marie. Int. J. Adv. Robot. Syst. 3(1), 55–60 (2006)

24. Darwin, C., Beer, G.: The origin of species. Dent (1951)
25. De Rosa, M., Goldstein, S., Lee, P., Campbell, J., Pillai, P.: Scalable shape sculpting via hole

motion: motion planning in lattice-constrained modular robots. In: Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 1462–1468.
IEEE (2006)

670 Y. Sahni et al.

26. DiMario, E.,Martinoli, A.: Distributed particle swarmoptimization for limited-time adaptation
with real robots. Robotica 32(02), 193–208 (2014)

27. Einhorn, E., Langner, T., Stricker, R., Martin, C., Gross, H.M.: Mira-middleware for robotic
applications. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2591–2598. IEEE (2012)

28. Elkady, A., Sobh, T.: Robotics middleware: a comprehensive literature survey and attribute-
based bibliography. J. Robot. 2012 (2012)

29. Engelberger, J.F.: Robotics in Practice: Management and Applications of Industrial Robots.
Springer Science & Business Media (2012)

30. Farinelli, A., Iocchi, L., Nardi, D.:Multirobot systems: a classification focused on coordination.
IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34(5), 2015–2028 (2004)

31. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and
distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced
Robotics, vol. 1, pp. 317–323 (2003)

32. Gerkey, B.P., Vaughan, R.T., Stoy, K., Howard, A., Sukhatme, G.S., Mataric, M.J.: Most valu-
able player: a robot device server for distributed control. In: 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001. Proceedings, vol. 3, pp. 1226–1231.
IEEE (2001)

33. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B.,
Serre, J., Maisonnier, B.: The nao humanoid: a combination of performance and affordability.
CoRR abs/08073223 (2008)

34. Grieco, L.A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Di Paola, D., Boggia, G.: Iot-aided
robotics applications: technological implications, target domains and open issues. Comput.
Commun. 54, 32–47 (2014)

35. Gummadi, R., Gnawali, O., Govindan, R.:Macro-programmingwireless sensor networks using
kairos. In: International Conference onDistributedComputing in Sensor Systems, pp. 126–140.
Springer (2005)

36. Habibi, G., Xie,W., Jellins, M., McLurkin, J.: Distributed path planning for collective transport
using homogeneous multi-robot systems. In: Distributed Autonomous Robotic Systems, pp.
151–164. Springer (2016)

37. Heckel, F., Blakely, T., Dixon, M., Wilson, C., Smart, W.D.: The wurde robotics middleware
and ride multirobot tele-operation interface. In: Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI06) (2006)

38. Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile
robot team: exploration, mapping, deployment and detection. Int. J. Robot. Res. 25(5–6), 431–
447 (2006)

39. Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE
Netw. 26(3), 21–28 (2012)

40. Jackson, J.: Microsoft robotics studio: a technical introduction. IEEE Robot. Autom. Mag.
14(4), 82–87 (2007)

41. Jang, C., Lee, S.I., Jung, S.W., Song, B., Kim, R., Kim, S., Lee, C.H.: Opros: a new component-
based robot software platform. ETRI J. 32(5), 646–656 (2010)

42. Jia, S., Takase, K.: Network distributed monitoring system based on robot technology middle-
ware. Int. J. Adv. Robot. Syst. 4(1), 69–72 (2007)

43. Jia, S., Hada, Y., Gakuhari, H., Takase, K., Ohnishi, T., Nakamoto, H.: Intelligent home ser-
vice robotic system based on robot technology middleware. In: 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4478–4483. IEEE (2006)

44. Jiang, S., Cao, J., Liu, Y., Chen, J., Liu, X.: Programming large-scale multi-robot system with
timing constraints. In: 2016 25th International Conference on Computer Communication and
Networks (ICCCN), pp. 1–9. IEEE (2016a)

45. Jiang, S., Liang, J., Cao, J., Liu, R.: An ensemble-level programmingmodel with real-time sup-
port for multi-robot systems. In: 2016 IEEE International Conference on Pervasive Computing
and Communication Workshops (PerCom Workshops), pp. 1–3. IEEE (2016)

Middleware for Multi-robot Systems 671

46. Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of honeybee aggrega-
tion behavior in an artificial micro-robotic system. Adapt. Behav. 17(3), 237–259 (2009)

47. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends
Biotechnol. 31(5), 287–294 (2013)

48. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots: a survey.
Auton. Robots 22(2), 101–132 (2007)

49. Liang, J., Cao, J., Liu, R., Li, T.: Distributed intelligent mems: a survey and a real-time pro-
gramming framework. ACM Comput. Surv. (CSUR) 49(1), 20 (2016)

50. Lima, P.U., Custodio, L.M.: Multi-robot systems. In: Innovations in Robot Mobility and Con-
trol, pp. 1–64. Springer (2005)

51. Lopes, Y.K., Leal, A.B., Dodd, T.J., Groß, R.: Application of supervisory control theory to
swarms of e-puck and kilobot robots. In: International Conference on Swarm Intelligence, pp.
62–73. Springer (2014)

52. Magnenat, S., Longchamp, V., Mondada, F.: Aseba, an event-based middleware for distributed
robot control. In: Workshops and Tutorials CD IEEE/RSJ 2007 International Conference on
Intelligent Robots and Systems, LSRO-CONF-2007-016. IEEE Press (2007)

53. Magnenat, S., Noris, B., Mondada, F.: Aseba-challenge: an open-source multiplayer introduc-
tion to mobile robots programming. In: Fun and Games, pp. 65–74. Springer (2008a)

54. Magnenat, S., Rétornaz, P., Noris, B.,Mondada, F.: Scripting the swarm: event-based control of
microcontroller-based robots. In: SIMPAR 2008 Workshop Proceedings, LSRO-CONF-2008-
057 (2008b)

55. Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: Aseba: a modular archi-
tecture for event-based control of complex robots. IEEE/ASME Trans. Mechatron. 16(2), 321–
329 (2011)

56. Makarenko, A., Brooks, A., Kaupp, T.: Orca: components for robotics. In: International Con-
ference on Intelligent Robots and Systems (IROS), pp. 163–168 (2006)

57. Manso, L., Bachiller, P., Bustos, P., Núñez, P., Cintas, R., Calderita, L.: Robocomp: a tool-based
robotics framework. In: International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, pp. 251–262. Springer (2010)

58. Mataric, M.J.: Interaction and intelligent behavior. Technical report, DTIC Document (1994)
59. McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environments using

a swarm of autonomous mobile robots. In: In 7th International Symposium on Distributed
Autonomous Robotic Systems (DARS). Citeseer (2004)

60. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish:
Human-robot interface design for large swarms of autonomousmobile robots. In: AAAI Spring
Symposium: To Boldly GoWhere NoHuman-Robot TeamHas Gone Before, pp. 72–75 (2006)

61. McLurkin, J., Lynch, A.J., Rixner, S., Barr, T.W., Chou, A., Foster, K., Bilstein, S.: A low-cost
multi-robot system for research, teaching, and outreach. In: Distributed Autonomous Robotic
Systems, pp. 597–609. Springer (2013)

62. McLurkin, J., Rykowski, J., John, M., Kaseman, Q., Lynch, A.J.: Using multi-robot systems
for engineering education: teaching and outreach with large numbers of an advanced, low-cost
robot. IEEE Trans. Educ. 56(1), 24–33 (2013)

63. McLurkin, J., McMullen, A., Robbins, N., Habibi, G., Becker, A., Chou, A., Li, H., John, M.,
Okeke, N., Rykowski, J., et al.: A robot system design for low-cost multi-robot manipulation.
In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 912–918.
IEEE (2014)

64. Michael, N., Fink, J., Kumar, V.: Experimental testbed for large multirobot teams. IEEE Robot.
Autom. Mag. 15(1), 53–61 (2008)

65. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Middleware for robotics: a survey. In: 2008 IEEE
Conference on Robotics Automation and Mechatronics, pp. 736–742. IEEE (2008)

66. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: A review of middleware for networked robots. Int. J.
Comput. Sci. Netw. Secur. 9(5), 139–148 (2009)

67. Mondada, F., Franzi, E., Guignard, A.: The development of khepera. In: Experiments with
the Mini-Robot Khepera, Proceedings of the First International Khepera Workshop, LSRO-
CONF-2006-060, pp. 7–14 (1999)

672 Y. Sahni et al.

68. Mondada, F., Bonani,M., Raemy,X., Pugh, J., Cianci, C., Klaptocz, A.,Magnenat, S., Zufferey,
J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In:
Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, IPCB:
Instituto Politécnico de Castelo Branco, vol. 1, pp. 59–65 (2009)

69. Mottola, L., Picco, G.P.: Programming wireless sensor networks: fundamental concepts and
state of the art. ACM Comput. Surv. (CSUR) 43(3), 19 (2011)

70. Owens, G., Granader, Y., Humphrey, A., Baron-Cohen, S.: Lego® therapy and the social use
of language programme: An evaluation of two social skills interventions for children with high
functioning autism and asperger syndrome. J. Autism Dev. Disord. 38(10), 1944–1957 (2008)

71. Parker, L.E.: Current state of the art in distributed autonomous mobile robotics. In: Distributed
Autonomous Robotic Systems 4. Springer, pp. 3–12 (2000)

72. Prencipe,G., Santoro,N.:Distributed algorithms for autonomousmobile robots. In: Fourth IFIP
International Conference on Theoretical Computer Science-TCS 2006, pp. 47–62. Springer
(2006)

73. Pugh, J., Raemy, X., Favre, C., Falconi, R., Martinoli, A.: A fast onboard relative positioning
module for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 151–162 (2009)

74. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros:
an open-source robot operating system. In: ICRAWorkshop on Open Source Software, Kobe,
Japan, vol. 3, p. 5 (2009)

75. Rogers III, J.G., Trevor, A.J., Nieto-Granda, C., Cunningham, A., Paluri, M., Michael, N., Del-
laert, F., Christensen, H.I., Kumar, V.: Effects of sensory precision on mobile robot localization
and mapping. In: Experimental Robotics, pp. 433–446. Springer (2014)

76. Rubenstein, M., Shen, W.M.: Automatic scalable size selection for the shape of a distributed
robotic collective. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 508–513. IEEE (2010)

77. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective
behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp.
3293–3298. IEEE (2012)

78. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., Nagpal, R.: Collective
transport of complex objects by simple robots: theory and experiments. In: Proceedings of the
2013 International Conference on Autonomous Agents andMulti-agent Systems, International
Foundation for Autonomous Agents and Multiagent Systems, pp. 47–54 (2013)

79. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with
scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975
(2014)

80. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot
swarm. Science 345(6198), 795–799 (2014)

81. Saeedi, S., Trentini, M., Seto, M., Li, H.: Multiple-robot simultaneous localization and map-
ping: a review. J. Field Robot. 33(1), 3–46 (2016)

82. Sapaty, P.: Military robotics: latest trends and spatial grasp solutions. Int. J. Adv. Res. Artif.
Intell. 4(4), 9–18 (2015)

83. Sartoretti, G., Hongler, M.O., de Oliveira, M.E., Mondada, F.: Decentralized self-selection of
swarm trajectories: from dynamical systems theory to robotic implementation. Swarm Intell.
8(4), 329–351 (2014)

84. Schlegel, C.,Worz, R.: Interfacing different layers of a multilayer architecture for sensorimotor
systems using the object-oriented framework smartsoft. In: 1999 Third European Workshop
on Advanced Mobile Robots, 1999 (Eurobot’99), pp. 195–202. IEEE (1999)

85. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer Science & Business Media
(2008)

86. Smart, W.D.: Is a common middleware for robotics possible? In: Proceedings of the IROS
2007 Workshop on Measures and Procedures for the Evaluation of Robot Architectures and
Middleware. Citeseer, vol. 1 (2007)

87. Soares, J.M., Aguiar, A.P., Pascoal, A.M., Martinoli, A.: A graph-based formation algorithm
for odor plume tracing. In: Distributed Autonomous Robotic Systems, pp. 255–269. Springer
(2016)

Middleware for Multi-robot Systems 673

88. Soares, J.M., Navarro, I., Martinoli, A.: The khepera iv mobile robot: performance evaluation,
sensory data and software toolbox. In: Robot 2015: Second Iberian Robotics Conference, pp.
767–781. Springer (2016)

89. Stampfer, D., Lotz, A., Lutz, M., Schlegel, C.: The smartmdsd toolchain: an integrated mdsd
workflow and integrated development environment (ide) for robotics software. J. Softw. Eng.
Robot. 7(1), 3–19 (2016)

90. Stoy, K., Nagpal, R.: Self-repair through scale independent self-reconfiguration. In: 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004).
Proceedings, vol. 2, pp. 2062–2067. IEEE (2004)

91. Tsui, K.M., Yanco, H.A.: Assistive, rehabilitation, and surgical robots from the perspective of
medical and healthcare professionals. In: AAAI 2007 Workshop on Human Implications of
Human-Robot Interaction, Technical ReportWS-07-07 Papers from the AAAI 2007Workshop
on Human Implications of HRI (2007)

92. Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G.: Miro-middleware for mobile robot appli-
cations. IEEE Trans. Robot. Autom. 18(4), 493–497 (2002)

93. Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty architecture for
robotic autonomy. In: Aerospace Conference, 2001, IEEE Proceedings, vol. 1, pp. 1–121. IEEE
(2001)

94. Wang, M.M., Cao, J.N., Li, J., Dasi, S.K.: Middleware for wireless sensor networks: a survey.
J. Comput. Sci. Technol. 23(3), 305–326 (2008)

95. Whittier, L.E., Robinson, M.: Teaching evolution to non-english proficient students by using
lego robotics. Am. Second. Educ. 19–28 (2007)

96. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous
vehicles in warehouses. AI Mag. 29(1), 9 (2008)

97. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int.
J. Adv. Robot. Syst. 10 (2013)

	Middleware for Multi-robot Systems
	1 Introduction
	2 Existing Multi-robot Systems and Applications
	2.1 Existing Multi-robot Systems
	2.2 Multi-robot System Applications

	3 Design Goals for MRS Middleware
	4 A Taxonomy of MRS Middleware
	5 Representative Middleware for MRS
	6 Future Directions and Challenges
	References

