
Information Sciences 635 (2023) 72–85

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Privacy-preserving and efficient data sharing for blockchain-based

intelligent transportation systems

Shan Jiang a, Jiannong Cao a,∗, Hanqing Wu a, Kongyang Chen b,c,∗, Xiulong Liu d,∗

a Department of Computing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
b Institutes of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou, China
c Pazhou Lab, Guangzhou, China
d College of Intelligence and Computing, Tianjin University, Tianjin, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Blockchain

Intelligent transportation systems

Searchable symmetric encryption

Smart contract

Privacy preservation

Recent years have witnessed the development and adoption of blockchain technology in
intelligent transportation systems (ITS) because of its authenticity and traceability. However,
increasing ITS devices impose grand challenges in privacy-preserving and efficient data sharing.
Recent research has demonstrated that integrating searchable symmetric encryption in blockchain
enables privacy-preserving data sharing among ITS devices. However, existing solutions focus
only on single-keyword searches over encrypted ITS data on the blockchain and suffer from
privacy and efficiency issues when extended to multi-keyword scenarios. This work proposes
a bloom filter-based multi-keyword search protocol for ITS data with enhanced efficiency and
privacy preservation. We design a bloom filter to select a low-frequency keyword from the
multiple keywords input by the ITS data owner. The low-frequency keyword can filter out a large
portion of the ITS data from the search result, thus significantly reducing the computational cost.
Furthermore, each identifier-keyword pair is attached with a pseudorandom tag that enables the
completion of a search operation in only one round. In this manner, privacy is preserved because
there are no intermediate rounds and results. In addition to the multi-keyword search protocol,
we specify the addition and deletion protocols to enable dynamic updates of data records. We
conducted a comprehensive performance evaluation of the protocols. The experimental results
indicate that the proposed multi-keyword search protocol saves 14.67% query time and 59.96%
financial cost.

1. Introduction

In the past decades, intelligent transportation systems (ITS) [46] have emerged, integrating the technologies of computer vision,
sensing, wireless communication, etc., to reduce traffic accidents and improve transportation efficiency. The total market value of
ITS is expected to hit 42.8 billion US dollars by 2028 [2]. In ITS, autonomous vehicles need to share a large amount of data with each
other and the infrastructure (i.e., roadside units and base stations) to facilitate secure and fast decision-making [14]. For example,
the incident information can be quickly delivered to the surrounding vehicles for accurate arrival time estimation as well as better

* Corresponding authors.

E-mail addresses: cs-shan.jiang@polyu.edu.hk (S. Jiang), jiannong.cao@polyu.edu.hk (J. Cao), hanqing.91.wu@connect.polyu.hk (H. Wu), kychen@gzhu.edu.cn
Available online 27 March 2023
0020-0255/© 2023 Elsevier Inc. All rights reserved.

(K. Chen), xiulong_liu@tju.edu.cn (X. Liu).

https://doi.org/10.1016/j.ins.2023.03.121

Received 18 September 2022; Received in revised form 10 March 2023; Accepted 19 March 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:cs-shan.jiang@polyu.edu.hk
mailto:jiannong.cao@polyu.edu.hk
mailto:hanqing.91.wu@connect.polyu.hk
mailto:kychen@gzhu.edu.cn
mailto:xiulong_liu@tju.edu.cn
https://doi.org/10.1016/j.ins.2023.03.121
https://doi.org/10.1016/j.ins.2023.03.121

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

path planning [40]. Moreover, the traffic lights can be carefully scheduled based on the road traffic information to maximize the
traffic flow [45].

The traditional ITS data-sharing approaches can be categorized into data hosting-based [19] and data aggregation-based [32]. In
data hosting-based approaches, the roadside units and base stations serve as the data hosting center storing data and responding to
the search queries from the vehicles [30]. Because the upload data can be sensitive and numerous, such approaches incur privacy
and efficiency concerns. Concerning data aggregation-based approaches, the vehicles only upload the metadata (descriptions) instead
of the raw data to the roadside units and base stations [20]. In such circumstances, the existence of raw data corresponding to the
metadata can hardly be ensured, resulting in authenticity issues.

The fundamental inadequacies of data hosting-based and data aggregation-based approaches lie in the reliance on a centralized
server, either a roadside unit or a base station. To tackle the centralization issue, the research community has identified blockchain
technology as a critical enabling solution for secure ITS data sharing [31]. More specifically, the vehicles, roadside units, and base
stations are blockchain nodes and users simultaneously. They form a peer-to-peer network and maintain a blockchain. The data
generated from vehicles are encrypted and securely stored on the blockchain. Moreover, these data can be queried by other vehicles,
roadside units, and base stations via smart contracts in a privacy-preserving manner [28].

Searchable symmetric encryption is widely adopted as the encryption technique for blockchain-based ITS data-sharing system,
where ITS data and search queries are encrypted, stored, and executed on blockchain [47]. On the one hand, the querier knows
nearly nothing about the data, so privacy is preserved. On the other hand, the search queries are executed via smart contracts by
the whole blockchain network, ensuring the soundness and completeness of the query results. Therefore, integrating blockchain and
searchable symmetric encryption enables secure and privacy-preserving sharing among ITS devices.

Despite the significance, the state-of-the-art searchable encryption approaches over blockchains [48,3] merely consider a sin-

gle keyword. Indeed, the approaches can be extended to serve multiple keywords by undertaking the keywords individually and
computing the intersection [17]. However, such extensions intrinsically suffer from security and efficiency issues. In particular, the
intermediate results, i.e., the ITS data associated with each keyword, will be leaked to the blockchain nodes. Such data leakage
raises security and privacy concerns [12]. Moreover, the blockchain nodes must proceed with the single-keyword search queries
sequentially. Note that some keywords are associated with most and even all the identifiers. Therefore, dealing with the numerous
keywords incurs a relatively high computation cost and time overhead. The intermediate results need to be stored in the search smart
contract, resulting in a high financial cost.

In this work, we design a secure and efficient ITS data-sharing system with database setup, dynamic update, and multi-keyword
search services. We regard the offloaded database as multiple pairs of identifiers and keywords. That is, there are several keywords
associated with each of the identifiers. After setup, the ITS data owner can update the data by dynamically adding or deleting specific
identifier-keyword pairs. Meanwhile, the ITS data owners can perform multi-keyword search queries to find the identifiers linked
to some given keywords. The multi-keyword search queries can be executed with a low time and financial overhead owing to the
novel bloom filter-enabled approach proposed in this work. The ITS devices act as blockchain nodes that hire data and computation
resources to reap economic rewards. The protocols of database setup, dynamic update, and multi-keyword search are implemented
with the help of the smart contracts running on the blockchain.

The main contributions of this work are as follows:

• We propose a bloom filter-enabled multi-keyword search protocol for blockchain-based ITS data sharing, significantly saving the
time overhead and financial cost.

• We design a cost estimation method for various blockchain operations so that the cost limit role in smart contracts will not be
violated.

• We conduct extensive experiments in real-world ITS datasets, validating the proposed protocols’ practicability and effectiveness.

The remainder of this work is organized as follows. Sec. 2 summarizes the related work and articulates the motivations of this
work. Sec. 3 elaborates on the system design and proposed protocols of setup, addition, deletion, and multi-keyword search. Sec. 4

shows the experimental settings and extensive performance evaluation results regarding time overhead and financial cost. Finally,
Sec. 5 concludes this work and suggests future research directions.

2. Related work

This section presents the related work of blockchain-based ITS, data sharing in ITS, and high-performance search over blockchains.
We show that secure and efficient data sharing for blockchain-based ITS is important and inadequately addressed.

2.1. Blockchain-based intelligent transportation systems

With the popularity of blockchain technology, its applications in intelligent transportation systems have been attracting intensive
attention from academia and industry. There are a bunch of survey papers about blockchain-enabled intelligent transportation
systems [43,31,7]. As early as 2016, Yuan and Wang conducted a pioneering study of blockchain-based ITS and designed an ITS-

oriented seven-layer blockchain conceptual model [43]. Mollah et al. presented the first comprehensive survey of blockchain-based
73

ITS, covering the applications, architectures and frameworks, challenges, and future research opportunities [31]. More recently,

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Dibaei et al. focused on the security of vehicular networks and surveyed the blockchain and machine learning-based approaches to
tackle the security issues [7].

The research community has identified a bunch of critical applications of blockchain-based ITS, including data protection and
trading, resource sharing, content broadcasting, and traffic control [13]. Many challenging issues arise and remain to be addressed,
such as incentive mechanism design [28,49] and high-performance consensus [26]. For example, Li et al. proposed CreditCoin
facilitating content broadcasting [28]. In particular, CreditCoin is a blockchain-based ITS incentivizing vehicles to share surrounding
traffic information while guaranteeing its anonymity and authenticity.

Besides the challenges above, security and privacy are also significant challenges of blockchain-based ITS because insecurity
leads to accidents and even fatalities, and privacy leakage makes data owners lose great value [34]. For example, Lei et al. discussed
the limitations of traditional authentication mechanisms in cloud-based ITS systems. They introduced a blockchain-based solution
for vehicle authentication as well as key exchange [27]. However, current work mainly considers the security of vehicles from the
perspective of communication or authentication [27].

2.2. Data sharing in intelligent transportation systems

Data sharing is essential for ITS because it enriches individual vehicles’ knowledge, achieving higher road safety and better path
planning [35]. Most existing data-sharing approaches derive from the requirement of ITS applications, e.g., content broadcasting and
dissemination [22] and vehicular mobile social networks [36]. For example, Ko et al. proposed employing vehicle-to-vehicle data
sharing to facilitate the roadside units to schedule data services in bidirectional road scenarios [22]. Sun et al. developed secure
and flexible vehicular social networks by designing a blockchain-based tampering-resistant data sharing mechanism [36]. Similarly,
Kong et al. proposed an effective and efficient approach to allowing vehicles to share multi-dimensional sensory data with privacy
preservation [23]. Furthermore, Gosman et al. considered the trustworthiness of information shared by vehicles and devised an
approach to quality assessment concerning spatial accuracy, temporal closeness, and vehicle reputation [10].

Recently, emerging studies have considered the challenges of ITS data sharing, including security, efficiency, and flexibility. Sun
et al. proposed a flexible cross-domain authorization mechanism for secure ITS big data sharing [37]. In particular, a ciphertext con-

version technique was designed to achieve high-fidelity data communication between two vehicles in different platoons. Regarding
ITS data sharing, blockchain is a promising solution due to its distinctive properties of security and decentralization, and there are
many related studies [6]. Kang et al. designed a blockchain-based edge computing architecture integrating autonomous vehicles,
roadside units, and base stations, in which the vehicles can share data securely and efficiently [20]. To the best of our knowledge,
it is the first to consider blockchain-based ITS data sharing. Javaid et al. further considered trust management in blockchain-based
ITS inter- and intra-network communication [16]. Cui et al. reduced the dependence on roadside units and enhanced the traceability
and anonymity during ITS data sharing [5].

2.3. High-performance search over blockchain

Searching over a blockchain has been a hot topic in recent years [41]. The naive approach is that the user sends a search query
to a blockchain full node, and the full node proceeds block by block and transaction by transaction. However, such an approach
incurs low efficiency, integrity, and efficiency. Notably, it is time-consuming to scan the whole blockchain, a single full node can be
malicious, and the data and search queries are transparent to the public. To this end, the researchers have been designing blockchain
search protocols guaranteeing integrity and privacy and enhancing efficiency.

Smart contracts and verifiable computation are two mainstream approaches to enhancing search integrity. In smart contract-based
methods, the requests from users are executed by all the blockchain nodes rather than a single one [17]. As long as a blockchain
system is secure, the search results will be honorable because most blockchain nodes agree on the results. Such methods are conve-

nient to be adapted to all kinds of blockchain data but are time- and computation-intensive. Regarding verifiable computation, the
full node returns not only the results but proof as well [42]. The returned proof is essential to verify the search results’ integrity, i.e.,
soundness and completeness. Such an approach enjoys high efficiency owing to the design of subtle data structure for verification
[44]. However, no universal data structure can handle every kind of data.

Searchable symmetric encryption is one of the emerging techniques concerning privacy protection [15,38,11]. The data, search
queries, and results are encrypted throughout the search procedures over blockchain so that the users know nearly nothing about the
data stored by the owners. Hu et al. proposed the first protocol integrating searchable symmetric encryption in blockchain search,
supporting keyword-based search queries [15]. Cai et al. further devised a fair protocol to handle disputes and issue fair payments
between data users and owners [3]. Chen et al. integrated blockchain and searchable encryption technologies for vehicular mobile
social networks comprehensively considering both the backward and forward privacy [4]. The techniques are widely employed in
sharing electronic health records [4,18,33]. Searchable symmetric encryption can also be implemented in smart contracts providing
privacy and integrity simultaneously [15,17].

In a nutshell, existing studies have considered data sharing a critical application of blockchain-based ITS. However, they only
focus on real-world implementation or are conceptual works while neglecting security and efficiency issues.

3. Secure and efficient ITS data sharing

In this section, we present the overall system design of the proposed ITS data sharing scheme in Sec. 3.1 and explain the detailed
74

protocols of database setup, dynamic update, and multi-keyword search in Sec. 3.2, Sec. 3.3, and Sec. 3.4, respectively.

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Fig. 1. System overview of the blockchain-based ITS data-sharing system. On the one hand, autonomous vehicles enjoy privacy-preserving and efficient data-sharing
services by sending the encrypted data and operations to and receiving encrypted query results from the roadside infrastructure. On the other hand, the roadside
infrastructure, including roadside units and base stations, maintain a blockchain and responds to the vehicles’ operations by invoking pre-defined smart contracts.

3.1. System overview

As shown in Fig. 1, there are three entities in the blockchain-enabled ITS data management and sharing system, i.e., autonomous
vehicles, roadside units, and base stations. The roadside units and base stations are the service providers which form a blockchain
network and rent out computational resources to provide data-sharing services and earn monetary benefits. Autonomous vehicles are
service users who aim to offload their TIS data and enjoy content update and search services.

There are four kinds of actions that can happen between the blockchain nodes and data owners, i.e., setup, addition, deletion, and
search. The formal definitions of the four actions are as follows.

• Setup. The ITS data owner offloads a database 𝑊 = {(𝑖𝑑𝑖, 𝑤𝑖) ∣ 𝑖 = 1, 2, ⋯ , 𝑙}, consisting of a sequence of 𝑙 identifier-keyword pairs
to the blockchain nodes. Inside, 𝑖𝑑𝑖 ∈ {0, 1}𝜇 are the identifiers represented in strings with a certain length; 𝑤𝑖 ∈ {0, 1}∗ are the
keywords represented in strings with a uncertain length; (𝑖𝑑𝑖, 𝑤𝑖) means the identifier 𝑖𝑑𝑖 is associated with the keyword 𝑤𝑖. In
total, there are 𝑛 identifiers, 𝑚 keywords, and 𝑙 identifier-keyword pairs.

• Addition. The ITS data owner aims to update the offloaded database 𝑊 by associating a set of keywords 𝑊𝑎 to an identifier 𝑖𝑑.

• Deletion. The ITS data owner aims to update the offloaded database 𝑊 by disassociating a set of keywords 𝑊𝑎 from an identifier
𝑖𝑑.

• Search. The ITS data owner sends 𝑊𝑠 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑘} to the blockchain nodes to obtain all the identifiers 𝑖𝑑 s such that there
exists 𝑤 ∈𝑊𝑠 and (𝑖𝑑, 𝑤) ∈𝑊 .

The flowchart of the actions is demonstrated in Fig. 1. When autonomous vehicles, i.e., ITS data owners, conduct specific op-

erations, they run the protocols at the side of ITS data owners to pack the operations and encrypted data into several blockchain
transactions and send them to the roadside infrastructure. As for the roadside infrastructure, i.e., blockchain nodes, they run the
protocols at the side of blockchain nodes to proceed with the transactions through predefined smart contracts and confirm the trans-

actions to include them in the blockchain. To this end, the ITS data owners can obtain the search results by looking up the states in
the smart contracts. The system is designed so for several reasons. On the one hand, autonomous vehicles are generally mobile and
equipped with limited resources, making themselves unsuitable for maintaining blockchain and running smart contracts. To this end,
the vehicles are designed to perform affordable data encryption tasks only. On the other hand, the roadside units and base stations
are immobile and can afford computation-intensive blockchain tasks.

The security model affects the design of communication protocols. Generally, a strict security model fits the real world more
appropriately while requiring a more subtle protocol design. Our security model is strict because we assume both the blockchain
nodes and the ITS data owners in our system model can be malicious. In particular, the security model in this work is as follows.

• Standard public blockchain model. We follow the standard and most popular blockchain threat model [24] in this work. More
specifically, the blockchain nodes accept transactions from the ITS data owners and make a consensus on validating blocks. The
blockchain nodes together form the blockchain network. The whole blockchain system works correctly as long as there are no
more than 50% malicious blockchain nodes [39].

• Dishonest data owner. The ITS data owner may refuse to pay the fee after enjoying the data services of setup, addition, deletion,
75

and search from the blockchain nodes.

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Algorithm 1 Smart contract initialization protocol at blockchain nodes.

1: Allocate a dictionary 𝐷𝑜𝑟𝑖 ⊳ To store the encrypted keyword-identifier pairs

2: Allocate two sets 𝑆𝑑𝑒𝑙 and 𝑆𝑡𝑎𝑔 ⊳ 𝑆𝑑𝑒𝑙 is to cache the deleted identifier-keyword pairs and 𝑆𝑡𝑎𝑔 is to store all the identifier-keyword pairs

3: Allocate two lists 𝐹 𝑙𝑎𝑔 and 𝑅𝑒𝑠𝑢𝑙𝑡 ⊳ 𝐹 𝑙𝑎𝑔 is to facilitate the addition protocol and 𝑅𝑒𝑠𝑢𝑙𝑡 is to store the keyword search result

4: Set the balance as 𝐵, which is the money deposited by ITS data owner

Algorithm 2 Setup protocol at ITS data owner on storing 𝑊 .

1: 𝐾 , 𝐾+ , 𝐾− , 𝐾𝑇 ← {0, 1}𝜆 ⊳ Four secret keys of the same and fixed length 𝜆 for data encryption

2: Allocate two lists 𝐿 and 𝐿𝑡𝑎𝑔 , and a counter dictionary 𝐷𝑐𝑛𝑡𝑟 ⊳ The two lists will be offloaded while the dictionary is for local usage

3: 𝑐𝑜𝑢𝑛𝑡 ← 0 ⊳ The counter of the accumulated transactions

4: for each keyword 𝑤 ∈𝑊 do ⊳ Iterate over the keywords

5: 𝐾1||𝐾2 ← 𝐹 (𝐾, 𝑤) ⊳ Generate keyword-specific keys using the secret key 𝐾
6: 𝐾𝑇

𝑤
← 𝐹 (𝐾𝑇 , 𝑤) ⊳ Generate the key to encrypt the keyword-identifier pairs

7: 𝑐 ← 0 ⊳ The counter of the identifiers associated with the keyword 𝑤
8: for each 𝑖𝑑 ∈𝑊𝑤 do ⊳ Iterate over the identifiers associated with 𝑤
9: 𝑙 ← 𝐹 (𝐾1 , 𝑐) ⊳ Encrypt the counter as the encrypted keyword

10: 𝑑 ← 𝐸𝑛𝑐(𝐾2 , 𝑖𝑑) ⊳ Encrypt the identifier

11: 𝑐 ← 𝑐 + 1 ⊳ Increment 𝑐 by 1
12: 𝑡𝑎𝑔 ← 𝐹 (𝐾𝑇

𝑤
, 𝑖𝑑) ⊳ Encrypt the identifier-keyword pair

13: Append (𝑙, 𝑑) to 𝐿 ⊳ The pair (𝑙, 𝑑) will be offloaded

14: Append 𝑡𝑎𝑔 to 𝐿𝑡𝑎𝑔 ⊳ The 𝑡𝑎𝑔 will be offloaded

15: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1 ⊳ Increment 𝑐𝑜𝑢𝑛𝑡 by 1
16: if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝜇 then ⊳ Pack the data into a transaction if its volume reaches the limit

17: Shuffle 𝐿 and 𝐿𝑡𝑎𝑔 randomly ⊳ Shuffle the lists to avoid data leakage

18: Send (SETUP, 𝐿, 𝐿𝑡𝑎𝑔) to the blockchain nodes ⊳ Send out the transaction

19: 𝑐𝑜𝑢𝑛𝑡 ← 0 ⊳ Reset the counter 𝑐𝑜𝑢𝑛𝑡
20: Empty 𝐿 and 𝐿𝑡𝑎𝑔

21: end if

22: end for

23: 𝑆𝑒𝑡(𝐷𝑐𝑛𝑡𝑟, 𝑤, 𝑐) ⊳ Set the next counter of keyword 𝑤 as 𝑐
24: end for

25: Send (SETUP, 𝐿, 𝐿𝑡𝑎𝑔) to the blockchain nodes ⊳ Send out the remaining data

26: Sort the keywords 𝑤 ∈𝑊 with 𝐺𝑒𝑡(𝐷𝑐𝑛𝑡𝑟, 𝑤) in a non-increasing order to get a list of keywords 𝑊𝑠

27: Allocate a list 𝑏𝑓 of 𝛼 0∕1 bits initialized to be all 0 ⊳ Initialize the bloom filter with 𝛼 bits

28: for each keyword 𝑤 in the first 𝛽 percentage of 𝑊𝑠 do ⊳ Iterate over the high-frequency keywords

29: 𝑏𝑓 ← ((𝑤) | 𝑏𝑓) ⊳ Update the bloom filter using each high-frequency keyword

30: end for

31: Store 𝐾 , 𝐾+ , 𝐾− , 𝐾𝑇 , 𝑏𝑓 , and 𝐷𝑐𝑛𝑡𝑟 locally ⊳ Keep the secrete keys, bloom filter, and counter dictionary for local usage

We design privacy-preserving and efficient protocols based on the security model to fulfill the four actions described in the
following subsections. Before elaborating on the actions, we first explain the steps of initializing the smart contract as shown in
Algo. 1. The smart contract stores five variables, which are a dictionary 𝐷𝑜𝑟𝑖, two sets 𝑆𝑑𝑒𝑙 and 𝑆𝑡𝑎𝑔 , and two lists 𝐹 𝑙𝑎𝑔 and 𝑅𝑒𝑠𝑢𝑙𝑡.
Inside, 𝐷𝑜𝑟𝑖 keeps the encrypted pairs of keywords and identifiers, 𝑆𝑑𝑒𝑙 and 𝐹 𝑙𝑎𝑔 facilitate high-efficiency addition and deletion of
the data records, 𝑆𝑡𝑎𝑔 sustains the storage of search-related tags, and 𝑅𝑒𝑠𝑢𝑙𝑡 stores the results of search queries. Finally, the ITS data
owner has a surplus of 𝐵 units of tokens in the smart contract. The operations can cost no more than 𝐵 in the future, which we
assume is true in this work.

3.2. Database setup

Algo. 2 elaborates on the steps the ITS data owner needs to take to set up and offload the database. The ITS data owner targets
to store numerous identifier-keyword pairs on the blockchain. First, the ITS data owner generates four secret keys 𝐾 , 𝐾+, 𝐾−, and
𝐾𝑇 , all of the size 𝜆, an adjustable security parameter. Specifically, 𝐾 is for the encryption of the identifiers and keywords, 𝐾+ is to
support the addition operation, 𝐾− is to support the deletion operation, and 𝐾𝑇 is to encrypt the keyword-identifier pairs.

We leverage a pseudorandom function (PRF) [9] 𝐹 and the secret key 𝐾 to generate two keyword-specific keys 𝐾1 and 𝐾2 for each
keyword 𝑤. In particular, the key 𝐾1 takes the counter of identifiers associated with the keyword 𝑤 to generate the pseudorandom
labels of the keywords. The key 𝐾2 symmetrically encrypts the identifiers. Given a particular keyword 𝑤, we can quickly compute
the set of identifiers with 𝑤 as one of the keywords. The set is annotated as 𝑊𝑤. Afterward, we iterate the identifiers 𝑖𝑑 over 𝑊𝑤

and automatically increment the counter 𝑐 starting from 0. To this end, a sequence of keywords (𝑤), identifiers (𝑖𝑑 ∈ 𝑊𝑤), and
counters 𝑐 are obtained. On the one hand, we apply the PRF 𝐹 for the counter 𝑐 using the key 𝐹1 to get a pseudorandom label 𝑙
black representing the encrypted keyword. On the other hand, 𝐾2 is utilized to symmetrically encrypt the identifier 𝑖𝑑 to obtain the
encrypted identifier 𝑑. Then, the encrypted keyword-identifier pair is pushed into the list 𝐿. In addition, we sequentially take 𝑤 and
𝑖𝑑 as input to use the tag key 𝐾𝑇 and PRF 𝐹 to get a unique tag for each keyword-identifier pair. The tags are accumulated into
the list 𝐿𝑡𝑎𝑔 . The tags help boost the efficiency of search queries over multiple keywords. In a nutshell, we generate an encrypted
keyword-identifier pair and a unique tag for each identifier-keyword pair leveraging the secret keys 𝐾 and 𝐾𝑇 .

The ITS data owner sends the encrypted data, i.e., 𝐿 and 𝐿𝑡𝑎𝑔, to the blockchain nodes. However, the sizes of the two lists can
76

be too large to be contained in a single transaction because of the limit of transaction size and smart contract cost. In this work, we

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Algorithm 3 Setup protocol at blockchain nodes on receiving (SETUP, 𝐿, 𝐿𝑡𝑎𝑔).
1: Add all the elements (𝑙𝑖, 𝑑𝑖) in 𝐿 to the dictionary 𝐷𝑜𝑟𝑖 with 𝑙 as the key and 𝑑 as the value

2: Add all the elements in 𝐿𝑡𝑎𝑔 to the set 𝑆𝑡𝑎𝑔

Algorithm 4 Addition protocol at ITS data owner on adding (𝑖𝑑, 𝑊𝑎) to 𝑊 .

1: Allocate two lists 𝐿 and 𝐿𝑡𝑎𝑔 ⊳ The two lists will be offloaded

2: for each 𝑤 ∈𝑊𝑎 do ⊳ Iterate over the keywords to be associated with the identifier 𝑖𝑑
3: 𝐾+

1 ||𝐾
+
2 ← 𝐹 (𝐾+ , 𝑤) ⊳ Encrypt the keyword 𝑤 using the addition-related secrete key 𝐾+

4: 𝑐 ← 𝐺𝑒𝑡(𝐷𝑐𝑛𝑡𝑟, 𝑤) ⊳ Get the next counter of the keyword 𝑤 from the dictionary 𝐷𝑐𝑛𝑡𝑟

5: if 𝑐 = ⊥ then 𝑐 ← 0 end if ⊳ If there is no record, initialize the counter as 0
6: 𝑙 ← 𝐹 (𝐾+

1 , 𝑐) ⊳ Encrypt the counter as the encrypted keyword

7: 𝑑 ← 𝐸𝑛𝑐(𝐾+
2 , 𝑖𝑑) ⊳ Encrypt the identifier

8: 𝑑𝑒𝑙𝑖𝑑 ← 𝐹 (𝐹 (𝐾− , 𝑤), 𝑖𝑑) ⊳ Encrypt the keyword-identifier pair using the deletion secret key 𝐾−

9: 𝑡𝑎𝑔 ← 𝐹 (𝐹 (𝐾𝑇 , 𝑤), 𝑖𝑑) ⊳ Encrypt the keyword-identifier pair using the tag secret key 𝐾𝑇

10: Append (𝑙, 𝑑, 𝑑𝑒𝑙𝑖𝑑) to 𝐿 ⊳ The tuple (𝑙, 𝑑, 𝑑𝑒𝑙𝑖𝑑) will be offload

11: Append 𝑡𝑎𝑔 to 𝐿𝑡𝑎𝑔 ⊳ The 𝑡𝑎𝑔 will be offloaded

12: end for

13: Shuffle 𝐿 and 𝐿𝑡𝑎𝑔 randomly ⊳ Shuffle the lists to avoid data leakage

14: Send (ADD, 𝐿, 𝐿𝑡𝑎𝑔) to the blockchain nodes ⊳ Send out the transaction

15: Wait for value change of 𝐹 𝑙𝑎𝑔 ⊳ Wait for the execution of the addition smart contract

16: 𝑖 ← 1
17: for each 𝑤 ∈𝑊𝑎 do ⊳ Iterate over the keyword to be associated with the identifier 𝑖𝑑
18: if the 𝑖-th bit of 𝐹 𝑙𝑎𝑔 is 0 then ⊳ It means the keyword is not cached for deletion

19: 𝑐 ← 𝐺𝑒𝑡(𝐷𝑐𝑛𝑡𝑟, 𝑤)+ 1 ⊳ Get the next counter of the keyword 𝑤 using the dictionary 𝐷𝑐𝑛𝑡𝑟

20: 𝑆𝑒𝑡(𝐷𝑐𝑛𝑡𝑟, 𝑤, 𝑐) ⊳ Update the next counter of the keyword 𝑤
21: end if

22: 𝑖 ← 𝑖 + 1
23: end for

propose to slice the lists into pieces if they exceed the limit. More specifically, in the database setup protocol, the data arising from
each identifier-keyword pair is deterministic, i.e., only an encrypted keyword-identifier pair and a tag. Furthermore, the volume
of the encrypted keyword-identifier pair and tag are regular, given a PRF. For example, if the PRF is HMAC-SHA256 [25], each
keyword-identifier pair will result in an encrypted keyword-identifier pair in 512 bits and a tag in 256 bits.

Therefore, we can compute the computation capacity of every transaction, i.e., the number 𝜇 of identifier-keyword pairs in a
transaction. Suppose that the PRF 𝐹 digests any amount of data outputting 𝜇𝑓 bits, and every single transaction can store data with
at most 𝜇𝑡 bits. Then, the value of 𝜇 should be ⌊𝜇𝑡∕(3𝜇𝑓)⌋. In this work, we set the data volume limit of each transaction as 10 KB
(∼ 8000 bits) and employ HMAC-SHA256 as the PRF, i.e., 𝜇𝑡 equals 80, 000, 𝜇𝑓 equals 256, and 𝜇 is calculated to be 104. When the
counter reaches the limit 𝜇, we shuffle the lists 𝐿 and 𝐿𝑡𝑎𝑔 and send a transaction of setup containing them to the blockchain nodes.
Shuffling 𝐿 and 𝐿𝑡𝑎𝑔 is to prevent the blockchain nodes from inferring any information related to the data. For instance, 𝐿 and 𝐿𝑡𝑎𝑔

are in the same order concerning each identifier-keyword pair. Once a transaction is sent to blockchain nodes, the counter 𝑐𝑜𝑢𝑛𝑡 is
reset as 0, and the two lists are cleared. Then, we will sort the keywords according to their appearance times in the database to
initialize the bloom filter. It will be described in Sec. 3.4 in detail.

Regarding the blockchain nodes, they receive a sequence of transactions of setup operations accompanied by two lists 𝐿 and 𝐿𝑡𝑎𝑔 .
Algo. 3 shows how the blockchain nodes deal with the transactions. Regarding each transaction, blockchain nodes iterate the items
(𝑙𝑖, 𝑑𝑖) in 𝐿 and add elements into 𝐷𝑜𝑟𝑖 with 𝑙𝑖 and 𝑑𝑖 as the key and value. Then, the blockchain nodes copy all the variables in 𝐿𝑡𝑎𝑔

into the set 𝑆𝑡𝑎𝑔 . It is noticeable that the data storage in the smart contract is enabled with dictionaries and sets, which are unordered

data structures. It implies that the database setup protocol can resist the attacks leveraging the transaction order in nature.

3.3. Dynamic update

After the database setup, the ITS data owner can update the data records from time to time. In our protocol, we consider two
update operations, i.e., addition and deletion. The smart contract keeps 𝑆𝑑𝑒𝑙 , a set of keyword-identifier pairs cached for deletion. In
each update operation, the ITS data owner will inform the blockchain nodes of the way to update 𝑆𝑑𝑒𝑙 . The addition and deletion
protocols are presented in Algo. 4, Algo. 5, Algo. 6, and Algo. 7.

In the addition protocol, the ITS data owner aims to add a set of keywords 𝑊𝑎 to an identifier 𝑖𝑑. Note that in Algo. 2, the ITS
data owner increases a dictionary 𝐷𝑐𝑛𝑡𝑟 to maintain the latest counter of each keyword, i.e., the number of identifiers associated
with each keyword. Algo. 4 iterates over the keywords 𝑤 ∈𝑊𝑎 to be associated with 𝑖𝑑. The ITS data owner fetches the counter 𝑐
of the keyword 𝑤. The counter will be encrypted as 𝑙 representing the encrypted keyword. Regarding the identifier 𝑖𝑑, it will be
symmetrically encrypted to 𝑑. The encryption of the keywords and identifiers uses the addition key 𝐾+. Furthermore, 𝑑𝑒𝑙𝑖𝑑 and 𝑡𝑎𝑔
will be generated using the deletion key 𝐾− and tag key 𝐾𝑇 to go through the keyword 𝑤 and identifier 𝑖𝑑, respectively. To this end,
each keyword to be associated with the identifier will generate a tuple of 𝑙, 𝑑, 𝑑𝑒𝑙𝑖𝑑, and 𝑡𝑎𝑔. We append the tuple of (𝑙, 𝑑, 𝑑𝑒𝑙𝑖𝑑) s to
the list 𝐿 and the 𝑡𝑎𝑔 s to the list 𝐿𝑡𝑎𝑔 . The ITS data owner will send the two lists 𝐿 and 𝐿𝑡𝑎𝑔 to the blockchain nodes for the addition
77

of data records. Here, we assume for simplicity that a single transaction is large enough for the two lists. If too many elements are

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Algorithm 5 Addition protocol at blockchain nodes on receiving (ADD, 𝐿, 𝐿𝑡𝑎𝑔).
1: Add all the elements in 𝐿𝑡𝑎𝑔 to 𝑆𝑡𝑎𝑔 ⊳ Add all the keyword-identifier pairs

2: Allocate a list 𝐹 of |𝐿| bits ⊳ A temporary variable that will be assigned to 𝐹 𝑙𝑎𝑔 in the end

3: 𝑖 ← 1
4: for each (𝑙, 𝑑, 𝑑𝑒𝑙𝑖𝑑) ∈𝐿 do ⊳ Iterate over the list 𝐿
5: if 𝑑𝑒𝑙𝑖𝑑 ∈ 𝑆𝑑𝑒𝑙 then ⊳ The keyword-identifier pair was deleted and cached

6: Set the 𝑖-th bit of 𝐹 to be 1 ⊳ Mark the bit as cached for deletion

7: 𝑆𝑑𝑒𝑙 ← 𝑆𝑑𝑒𝑙 ⧵ {𝑑𝑒𝑙𝑖𝑑} ⊳ Remove the keyword-identifier pair from the set 𝑆𝑑𝑒𝑙

8: else

9: Set the 𝑖-th bit of 𝐹 to be 0 ⊳ Mark the bit as not cached for deletion

10: 𝐷𝑜𝑟𝑖 ← 𝐷𝑜𝑟𝑖 ∪ {(𝑙, 𝑑)} ⊳ Update the keyword-identifier dictionary 𝐷𝑜𝑟𝑖

11: end if

12: 𝑖 ← 𝑖 + 1
13: end for

14: Flag ← F ⊳ Assign 𝐹 to 𝐹 𝑙𝑎𝑔 to notify the completion of the addition smart contract

Algorithm 6 Deletion protocol at ITS data owner on deleting (𝑖𝑑, 𝑊𝑑) from 𝑊 .

1: Allocate two lists 𝐿𝑑𝑒𝑙 and 𝐿𝑡𝑎𝑔 ⊳ The two lists will be offloaded

2: for each 𝑤 ∈𝑊𝑑 do ⊳ Iterate over the keywords to be disassociated from the identifier 𝑖𝑑
3: 𝑑𝑒𝑙𝑖𝑑 ← 𝐹 (𝐹 (𝐾− , 𝑤), 𝑖𝑑) ⊳ Encrypt the keyword-identifier pair using the deletion secret key 𝐾−

4: 𝑡𝑎𝑔 ← 𝐹 (𝐹 (𝐾𝑇 , 𝑤), 𝑖𝑑) ⊳ Encrypt the keyword-identifier pair using the tag secret key 𝐾𝑇

5: Append 𝑑𝑒𝑙𝑖𝑑 to 𝐿𝑑𝑒𝑙 ⊳ The 𝑑𝑒𝑙𝑖𝑑 will be offloaded

6: Append 𝑡𝑎𝑔 to 𝐿𝑡𝑎𝑔 ⊳ The 𝑡𝑎𝑔 will be offloaded

7: end for

8: Shuffle 𝐿𝑑𝑒𝑙 and 𝐿𝑡𝑎𝑔 randomly ⊳ Shuffle the lists to avoid data leakage

9: Send (DELETE, 𝐿𝑑𝑒𝑙 , 𝐿𝑡𝑎𝑔) to the blockchain nodes ⊳ Send out the transaction

Algorithm 7 Deletion protocol at blockchain nodes on receiving (DELETE, 𝐿𝑑𝑒𝑙, 𝐿𝑡𝑎𝑔).
1: Add all the elements in 𝐿𝑑𝑒𝑙 to 𝑆𝑑𝑒𝑙

2: Remove all the elements in 𝐿𝑡𝑎𝑔 from 𝑆𝑡𝑎𝑔

added, we can split 𝐿 and 𝐿𝑡𝑎𝑔 similar to Algo. 2. The same assumption is made for the deletion protocol as well. Note that the lists
𝐿 and 𝐿𝑡𝑎𝑔 are shuffled before sending to the blockchain nodes to take care of privacy preservation.

Algo. 5 depicts the steps the blockchain nodes need to take when receiving an addition operation together with 𝐿 and 𝐿𝑡𝑎𝑔 . They
proceed as follows. First of all, the nodes insert the elements received in 𝐿𝑡𝑎𝑔 to the dictionary 𝑆𝑡𝑎𝑔 of the smart contract. Regarding
each element (𝑙, 𝑑, 𝑑𝑒𝑙𝑖𝑑) in 𝐿𝑡𝑎𝑔 , the nodes will examine if the set 𝑆𝑑𝑒𝑙 contains the element 𝑑𝑒𝑙𝑖𝑑. If yes, then (𝑙, 𝑑) is a cached element
for deletion and is supposed to be inserted back. In this circumstance, the element 𝑑𝑒𝑙𝑖𝑑 will be deleted from the deletion set 𝑆𝑑𝑒𝑙 ,
meaning the revocation of deleting (𝑙, 𝑑). Otherwise, 𝑑𝑒𝑙𝑖𝑑 is not in the set 𝑆𝑑𝑒𝑙 . It means (𝑙, 𝑑) is a newly added keyword-identifier
pair for the database. Under this circumstance, a new data record with 𝑙 as the key and 𝑑 as the value is inserted into the dictionary
𝐷𝑜𝑟𝑖. Meanwhile, the blockchain nodes will notify the ITS data owner to renew the dictionary 𝐷𝑐𝑛𝑡𝑟. More specifically, the blockchain
nodes save a list of |𝐿| 0∕1 bits to the variable 𝐹 𝑙𝑎𝑔 in the smart contract, in which 0 means (𝑙, 𝑑) is a new keyword-identifier pair
and 1 means (𝑙, 𝑑) is previously deleted.

The data owner will update the counter dictionary 𝐷𝑐𝑛𝑡𝑟 when the change of 𝐹 𝑙𝑎𝑔 in the smart contract is observed. Each 0 bit
in 𝐹 𝑙𝑎𝑔 means the keyword 𝑤 is associated with a newly added keyword-identifier pair. In this case, the data owner will fetch the
counter of 𝑤 in 𝐷𝑐𝑛𝑡𝑟, increase the counter by 1, and add the keyword-counter pair to 𝐷𝑐𝑛𝑡𝑟.

In the deletion protocol, the ITS data owner targets to disassociate a set of keywords 𝑊𝑑 from an identifier 𝑖𝑑. The protocol of
deletion is more concise than the one of addition. In particular, the data owner calculates 𝑑𝑒𝑙𝑖𝑑 using the deletion key 𝐾− and 𝑡𝑎𝑔
using the tag key 𝐾𝑇 for each (𝑖𝑑, 𝑤) ∈𝑊𝑑 . Then, the ITS data owner packs the 𝑑𝑒𝑙𝑖𝑑 s into the deletion list 𝐿𝑑𝑒𝑙 and the 𝑡𝑎𝑔 s into
the tag list 𝐿𝑡𝑎𝑔 . The two lists 𝐿𝑑𝑒𝑙 and 𝐿𝑡𝑎𝑔 will be shuffled randomly and sent to the blockchain nodes for deletion purposes.

On receiving 𝐿𝑑𝑒𝑙 and 𝑆𝑑𝑒𝑙 from the data owner, the blockchain nodes add all the elements in 𝐿𝑑𝑒𝑙 to 𝑆𝑑𝑒𝑙 and remove all the
elements in 𝐿𝑡𝑎𝑔 from 𝑆𝑡𝑎𝑔 . Note that 𝑆𝑑𝑒𝑙 is to cache the deletion of the identifier-keyword pair rather than direct execution to
save time. As for 𝑆𝑡𝑎𝑔 , it stores the pseudorandom labels of all the identifier-keyword pairs to facilitate the process of multi-keyword
search.

3.4. Multi-keyword search

The above protocols enable the ITS data owners to store and update the data records in a dynamic, secure, and privacy-preserving
manner. In the following, we present the protocol of multi-keyword search to enable the ITS data owners to query over the encrypted
data records.

Fig. 2 depicts how the proposed multi-keyword search protocol works. The 𝑘 keywords submitted by the ITS data owner will
go through a bloom filter, outputting a low-frequency keyword 𝑤1 and 𝑘 − 1 other keywords 𝑤2, 𝑤3, ⋯ , 𝑤𝑘. Note that 𝑤1 is “low-

frequency” if it “rarely” appears in the database 𝑊 . Then, the protocol performs a single-keyword search to filter the whole database
78

𝑊 using 𝑤1. Because 𝑤1 is low-frequency, the output set containing candidate identifiers will be small in size. The candidate

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Fig. 2. Flowchart of bloom filter-enabled search protocol. First, a low-frequency keyword is selected from the 𝑘 submitted keywords using a bloom filter. Then, the
whole database is filtered using the low-frequency keyword to get a set of candidate identifiers. Finally, each candidate identifier is examined by the other 𝑘 − 1
keywords one by one to compute the final results.

Algorithm 8 Search protocol at ITS data owner on searching (𝑤1, 𝑤2, ⋯ , 𝑤𝑘) in 𝑊 .

1: for 𝑖 ← 1 to 𝑘 do ⊳ Iterate over the indexes of the keywords in the search query

2: ℎ ← (𝑤𝑖) ⊳ Hash the keyword 𝑤𝑖

3: if (ℎ&𝑏𝑓) ≠ ℎ then ⊳ Check whether ℎ is in the bloom filter

4: Swap 𝑤1 and 𝑤𝑖 ⊳ If yes, then 𝑤𝑖 is a low-frequency keyword; switch the found low-frequency keyword 𝑤𝑖 with the first one

5: Break ⊳ A low-frequency keyword is found, so break the for-loop

6: end if

7: end for

8: 𝐾1||𝐾2 ← 𝐹 (𝐾, 𝑤1) ⊳ Encrypt the low-frequency keyword using the secrete key 𝐾
9: 𝐾+

1 ||𝐾
+
2 ← 𝐹 (𝐾+ , 𝑤1) ⊳ Encrypt the low-frequency keyword using the addition secrete key 𝐾+

10: 𝐾−
1 ← 𝐹 (𝐾− , 𝑤1) ⊳ Encrypt the low-frequency keyword using the deletion secrete key 𝐾−

11: for 𝑖 ← 2 to 𝑘 do ⊳ Iterate over the other keywords

12: 𝐾𝑇
𝑖
← 𝐹 (𝐾𝑇 , 𝑤𝑖) ⊳ Encrypt the other keywords using the tag secret key 𝐾𝑇

13: end for

14: Send (SEARCH, 𝐾1 , 𝐾2 , 𝐾+
1 , 𝐾+

2 , 𝐾−
1 , 𝐾𝑇

2 , ⋯ , 𝐾𝑇
𝑘
) to the blockchain nodes ⊳ Send out the search transaction

identifiers are checked through 𝑤2, 𝑤3, ⋯ , 𝑤𝑘 in sequence using pseudorandom tags to obtain the final result. Note that the checking
will not incur high overhead due to the small number of candidate identifiers.

First of all, we introduce the concept of high-frequency keywords. In Algo. 2, a dictionary 𝐷𝑐𝑛𝑡𝑟 is declared to count the number
of identifiers associated with each keyword, which is the appearance time defined as follows:

𝐹 (𝑤,𝑊) = |{𝑖𝑑 ∣ (𝑖𝑑,𝑤) ∈𝑊 }|

The set {𝑖𝑑 ∣ (𝑖𝑑, 𝑤) ∈ 𝑊 } represents all the identifiers associated with the keyword 𝑤. The appearance time of 𝑤 in 𝑊 , i.e.,
𝐹 (𝑤, 𝑊), is the cardinality of the set. We define that a keyword 𝑤 ∈ 𝑊 is high-frequency if after sorting {𝑤 ∣ 𝑤 ∈ 𝑊 } in a non-

increasing order according to 𝐹 (𝑤, 𝑊), the keyword 𝑤 appears in the first 𝛽 percentage. A keyword is defined as low-frequency in
𝑊 if it is not high-frequency in 𝑊 .

Second, we present the bloom filter method to find the low-frequency keywords. On the opposite side, we construct the bloom
filter 𝑏𝑓 for high-frequency keywords because the amount of high-frequency keywords is relatively small. The bloom filter is initial-

ized as an 𝛼-bit string with 0 s. A hash function  is applied for each high-frequency keyword 𝑤 to get an 𝛼-bit 0∕1 string, i.e., (𝑤).
We perform bitwise 𝑂𝑅 operation between 𝑏𝑓 and (𝑤) to update 𝑏𝑓 . After processing all the low-frequency keywords, 𝑏𝑓 will
be a bloom filter that can filter high-frequency keywords. Note that 𝛼 and 𝛽 are parameters that should be fine-tuned to make the
bloom filter efficient. In particular, when 𝛼 is large, the storage overhead will increase from the perspective of the ITS data owners.
In contrast, it will decrease the false positive ratio of asserting high-frequency keywords. Regarding 𝛽, a large value of 𝛽 increases
the false positive rate while reducing the true positive cost. In this work, we set 𝛼 and 𝛽 to be 8, 000 and 10%, respectively, which is
enough to handle a database of up to 9.1 M identifier-keyword pairs.

As shown in Algo. 8, the bloom filter can be used to efficiently find out a low-frequency keyword in the multi-keyword search
query. More specifically, for a keyword 𝑤, if its hash value, i.e., (𝑤) cannot pass the bloom filter, i.e., (𝑤) & 𝑏𝑓 ≠ (𝑤), then
we can make sure that 𝑤 is low-frequency. We switch the places of the found low-frequency keyword and the first keyword in the
multi-keyword search query.

Now, it comes to the phase of generating encrypted search queries by the data owner. The ITS data owner leverages the regular
key 𝐾 , addition key 𝐾+, and deletion key 𝐾− to generate three pseudorandom labels, i.e., regular label 𝐾1, addition label 𝐾+

1 , and
deletion label 𝐾−

1 and two symmetric keys, i.e., regular key 𝐾2 and addition key 𝐾+
2 for the first keyword 𝑤1 that is of low frequency.

In addition, a pseudorandom tag will be calculated for each other keywords using the tag key 𝐾𝑇 . To this end, an encrypted search
query containing three pseudorandom labels, two symmetric keys, and 𝑘 −1 tags is successfully composed and sent to the blockchain
nodes.

On receiving a search query from the data owner, the blockchain nodes will start with the first keyword and get a set of candidate
identifiers as in Algo. 9. More specifically, the nodes go through 𝐷𝑜𝑟𝑖 using the pseudorandom keys, i.e., regular key 𝐾1 and addition
key 𝐾+

1 . Then, the blockchain nodes accumulate all the counters in the key field of 𝐷𝑜𝑟𝑖 after encryption using 𝐾1 or 𝐾+
1 . Further-
79

more, the blockchain nodes add the identifiers after decryption corresponding to each accumulated counter using the corresponding

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Algorithm 9 Search protocol at blockchain nodes on receiving (SEARCH, 𝐾1, 𝐾2, 𝐾+
1 , 𝐾

+
2 , 𝐾

−
1 , 𝐾

𝑇
2 , ⋯ , 𝐾𝑇

𝑘
).

1: 𝑟𝑒𝑠 ← ∅ ⊳ A temporary variable that stores the search result

2: for 𝑐 ← 0 to ∞ do ⊳ Iterate the counter for the dictionary 𝐷𝑜𝑟𝑖 using 𝐾1 to get the identifiers associated with the first keyword

3: 𝑙 ← 𝐹 (𝐾1 , 𝑐) ⊳ Encrypt the counter as the encrypted keyword using the regular key

4: 𝑑 ← 𝐺𝑒𝑡(𝐷𝑜𝑟𝑖, 𝑙) ⊳ Check whether the encrypted keyword has an associated identifier

5: if 𝑑 = ⊥ then break end if ⊳ If no associated identifier, then break the for-loop

6: 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ∪ {𝐷𝑒𝑐(𝐾2 , 𝑑)} ⊳ Decrypt the associated identifier and add it to the search result

7: end for

8: for 𝑐 ← 0 to ∞ do ⊳ Iterate the counter for the dictionary 𝐷𝑜𝑟𝑖 using 𝐾+
1 to get the identifiers associated with the first keyword

9: 𝑙 ← 𝐹 (𝐾+
1 , 𝑐) ⊳ Encrypt the counter as the encrypted keyword using the addition secrete key

10: 𝑑 ← 𝐺𝑒𝑡(𝐷𝑜𝑟𝑖, 𝑙) ⊳ Check whether the encrypted keyword has an associated identifier

11: if 𝑑 = ⊥ then break end if ⊳ If no associated identifier, then break the for-loop

12: 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ∪ {𝐷𝑒𝑐(𝐾+
2 , 𝑑)} ⊳ Decrypt the associated identifier and add it to the search result

13: end for

14: for each 𝑖𝑑 ∈ 𝑟𝑒𝑠 do ⊳ Filter out those cached for deletion or not associated with the other keywords

15: 𝑑𝑒𝑙𝑖𝑑 ← 𝐹 (𝐾−
1 , 𝑖𝑑) ⊳ Compute the 𝑑𝑒𝑙𝑖𝑑 using the deletion secret key

16: if 𝑑𝑒𝑙𝑖𝑑 ∈ 𝑆𝑑𝑒𝑙 then ⊳ Check whether 𝑑𝑒𝑙𝑖𝑑 is in 𝑆𝑑𝑒𝑙

17: 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ⧵ {𝑖𝑑} ⊳ if 𝑑𝑒𝑙𝑖𝑠 is cached for deletion, then remove it from the search result

18: else

19: for 𝑖 ← 2 to 𝑘 do ⊳ Iterate over the other keywords

20: if 𝐹 (𝐾𝑇
𝑖
, 𝑖𝑑) ∉ 𝑆𝑡𝑎𝑔 then 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ⧵ {𝑖𝑑} end if ⊳ If the potential result is not associated with any keyword, then remove it from the search result

21: end for

22: end if

23: end for

24: 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠 ⊳ Assign 𝑟𝑒𝑠 to 𝑅𝑒𝑠𝑢𝑙𝑡 as the final multi-keyword search result

symmetric key. Finally, we simultaneously deal with the deletion set and the other 𝑘 −1 keywords. For each of the identifiers 𝑖𝑑 after
decryption, we check whether the encrypted result of 𝑖𝑑 using the pseudorandom deletion label 𝐾−

1 is in the set of 𝑆𝑑𝑒𝑙 and whether
any of the 𝑘 − 1 tags after applying PRF 𝐹 to 𝑖𝑑 is not in the tag list 𝑆𝑡𝑎𝑔 . If either of the two conditions holds, 𝑖𝑑 will be excluded
from the result.

Finally, we analyze the time delay and financial cost and compare the traditional and our methods. The traditional method takes
𝑂(𝑙) time and generates 𝑂(𝑛) identifiers for each single-keyword search query. Then, it takes an extra 𝑂(𝑘 ⋅ 𝑛 ⋅ log𝑛) time to calculate
the intersection of 𝑘 sets, each of which is of size 𝑂(𝑛). Since the writing operations dominate the financial cost for a smart contract
[29], we approximate the financial cost as the number of identifiers in the intermediate and final results. Hence, the time delay and
financial overhead are 𝑂(𝑘 ⋅ 𝑙+ 𝑘 ⋅ 𝑛 ⋅ log𝑛) and 𝑂(𝑘 ⋅ 𝑛), respectively. Our method takes 𝑂(𝑙) time to use the first keyword to filter the
database. Then, 𝛽 ⋅ 𝑛 identifiers will be generated and verified through 𝑘 − 1 tags, which takes 𝑂(𝑘 ⋅ 𝛽 ⋅ 𝑛) time. Therefore, the time
overhead for our approach is 𝑂(𝑙 + 𝑘 ⋅ 𝛽 ⋅ 𝑛). In the experiments, we figure that 𝛽 can be as small as 10%, remarkably reducing time
complexity. The financial cost overhead is 𝑂(𝑛) since only the final result will be written to the smart contract.

4. Performance evaluation

In this section, we conduct extensive experiments on three public datasets to evaluate the proposed protocols of setup, addition,
deletion, single-keyword search, and multi-keyword search.

4.1. Experimental settings

We implement the setup, addition, deletion, and search protocols in Python 3.9, using the PYCRYPTODOME and PYBLOOM [1]

packages to fulfill the pseudorandom HMAC-SHA256 function and bloom filter. We run the ITS data owner and the blockchain
nodes on workstations running Ubuntu 20.04.3 with 32 GB RAM and Intel Core i 9-10900 CPU. The blockchain nodes form a peer-

to-peer network through the local area network and employ the proof-of-work [8] as the blockchain consensus protocol. The nodes
respond to the setup, addition, deletion, and search requests from the ITS data owner by running the corresponding smart contracts.
We employ proof of work as the blockchain consensus protocol and set the difficulties low so as to neglect the influence of the
blockchain performance while focusing on the proposed data-sharing protocols only.

After setting up the experimental environment, we have conducted extensive experiments on three datasets: Enron Email Dataset
[21], Earth Surface Temperature Dataset,1 and New York City Bus Dataset2. The summary of the datasets is as follows:

• Enron Email Dataset. The dataset contains as many as 517 thousand emails. Each email is regarded as a new identifier 𝑖𝑑. The
words inside each email after lowercase are the associated keywords regarding 𝑖𝑑. The lowercase operations can reduce the
number of keywords.

• Earth Surface Temperature Dataset. It is a temperature dataset all around the world starting from 1750. Each row is treated as a
new identifier 𝑖𝑑, and each attribute in the row, e.g., average temperature, city, country, latitude, and longitude, is treated as a

1 https://www .kaggle .com /berkeleyearth /climate -change -earth -surface -temperature -data.
80

2 https://www .kaggle .com /stoney71 /new -york -city -transport -statistics.

https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/stoney71/new-york-city-transport-statistics

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Fig. 3. Distribution of keyword appearance. In either database, only a tiny percentage (less than 0.05%) of keywords are associated with many (less than 10%)
identifiers.

keyword associated with 𝑖𝑑. Note that the figures, i.e., temperature, latitude, and longitude, are narrowed down, losing all the
digits after the decimal point.

• New York City Bus Dataset. It is an intelligent transportation dataset consisting of bus locations, routes, bus stops, etc. We treat
each row in the dataset as a new identifier 𝑖𝑑, and each attribute in the row, e.g., origin name, destination name, vehicle reference
number, as a keyword associated with 𝑖𝑑. Similarly, the figures, i.e., latitude and longitude of the origins and destinations, are
narrowed down, losing the digits after the decimal point.

The sizes of the three datasets are given in Table 1. In particular, the New York City Bus Dataset has a more significant number of
identifiers and identifier-keyword pairs, and the Enron Email Dataset has numerous distinct keywords. Fig. 3 depicts the distribution
of the appearance times of different keywords. Some keywords are associated with all identifiers in the Enron Email Dataset because
almost all emails contain some words, e.g., “message”, “content”, and “type”. We can observe that for all three datasets, no more
than 0.05% keywords appear in at least 10% identifiers, which means there are very few high-frequency keywords. The New York
City Bus Dataset has an even smaller number of high-frequency keywords than the others.

4.2. Setup and update

The experimental results of the database setup, addition, and deletion protocols on the three datasets are shown in Table 1. The
setup operation takes considerable time and financial cost because of the encryption of a large amount of data and its storage on
the blockchain. The number of transactions, time costs, and encrypted database size increase linearly as the number of identifier-

keyword pairs increases in the original database. On the side of ITS data owners, most of the time is used in database encryption,
i.e., generating 𝐿, 𝐿𝑡𝑎𝑔 , secret keys, and bloom filter. The three databases contain large volumes of data, resulting in a large number
of transactions generated. The database setup of the three databases consumes transactions whose numbers are up to 42.3 thousand,
325.1 thousand, and 3.6 million. The blockchain nodes handle the received transactions by local storage, which takes a relatively
shorter time. The sizes of databases after encrypted are as large as 532 MB, 4, 084 MB, and 45, 820 MB, respectively.

The addition and deletion operations consume much less time and fewer transactions than the setup operation from the perspec-

tives of both the ITS data owner and the blockchain nodes. For example, in the Enron Email Dataset, each data owner and blockchain
node only takes around 1 s on average to complete the operation of addition or deletion. For the large dataset, e.g., New York City
Bus Dataset, such operation is still efficient and takes no more than 4 s on average.

We add extra data structures to boost the efficiency of multi-keyword search queries. The added data structures are the bloom
filter 𝑏𝑓 , tag secret key 𝐾𝑇 , and tag list 𝐿𝑡𝑎𝑔 . To this end, the proposed protocol demands approximately half more time, number of
transactions, and amount of storage space compared to the traditional protocol. Nevertheless, the proposed approach only influences
the database setup operation, making itself acceptable in that the setup protocol will be invoked only once in the whole life cycle of
data usage.

4.3. Single-keyword search

Regarding single-keyword search, the time overhead from the perspective of the ITS data owner is low. The reason is that it only
proceeds with a small number of symmetric encryption steps. As far as the blockchain nodes are concerned, they are required to
pass through the dictionary 𝐷𝑜𝑟𝑖 twice and with a large number of writing operations, incurring relatively high time overhead. We
perform experiments on single-keyword searches varying the keywords with different appearance times. The results are shown in
Fig. 4. We can see that 5.1 s, 37.5 s, and 86.3 s are needed for the three datasets with no matched identifiers. Note that the times are
spent traversing the dictionary 𝐷𝑜𝑟𝑖. When more identifiers are in the query result, the search time increases linearly. When there are
up to 500 matched identifiers, the single-keyword search times are increased to 14.6 s, 76.92 s, and 140.61 s for the three datasets.
The search time per identifier drops when the results have more identifiers. It is because a relatively larger number of identifiers can
reduce the average time overhead traversing the dictionary. In particular, when there are 500 matched identifiers, the search times
81

per identifier are lower than 0.4 s for all three datasets.

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Table 1

Database Setup and Dynamic Update.

Dataset (with Size) Operation No Multi-keyword Search Protocol Multi-keyword Search Protocol

Enron Email Dataset

1,352 MB in Size

517.0 K Identifiers

622.0 K Distinct Keywords

9.1 M Identifier-keyword Pairs

Setup

Data Owner 209 s Data Owner 272 s

Smart Contract 28,219 Txs Smart Contract 42,356 Txs

Blockchain Nodes 2.6 s Blockchain Nodes 3.0 s

Encrypted Database 378 MB Encrypted Database 532 MB

Addition

Data Owner 1.4 s Data Owner 2.0 s

Smart Contract 1 Tx Smart Contract 1 Tx

Blockchain Nodes 1.2 s Blockchain Nodes 1.5 s

Deletion

Data Owner 1.0 s Data Owner 1.0 s

Smart Contract 1 Tx Smart Contract 1 Tx

Blockchain Nodes 1.2 s Blockchain Nodes 1.4 s

Earth Surface Temperature Dataset

572 MB in Size

10.0 M Identifiers

8.7 K Distinct Keywords

69.9 M Identifier-keyword Pairs

Setup

Data Owner 1,650 s Data Owner 2,105 s

Smart Contract 216,763 Txs Smart Contract 325,145 Txs

Blockchain Nodes 20.0 s Blockchain Nodes 22.2 s

Encrypted Database 2,903 MB Encrypted Database 4,084 MB

Addition

Data Owner 1.7 s Data Owner 2.2 s

Smart Contract 1 Tx Smart Contract 1 Tx

Blockchain Nodes 2.1 s Blockchain Nodes 3.5 s

Deletion

Data Owner 1.9 s Data Owner 2.4 s

Smart Contract 1 Tx Smart Contract 1 Tx

Blockchain Nodes 2.5 s Blockchain Nodes 3.1 s

New York City Bus Dataset

5,284 MB in Size

26.5 M Identifiers

134.0 K Distinct Keywords

783.4 M Identifier-keyword Pairs

Setup

Data Owner 19,032 s Data Owner 24,216 s

Smart Contract 2,429,374 Txs Smart Contract 3,646,429 Txs

Blockchain Nodes 243.2 s Blockchain Nodes 269.5 s

Encrypted Database 32,544 MB Encrypted Database 45,820 MB

Addition

Data Owner 3.2 s Data Owner 3.5 s

Smart Contract 1 Tx Smart Contract 1 Tx

Blockchain Nodes 2.8 s Blockchain Nodes 5.8 s

Deletion

Data Owner 2.9 s Data Owner 3.1 s

Smart Contract 1 Tx Smart Contract 1 Tx

Blockchain Nodes 3.2 s Blockchain Nodes 4.9 s

Fig. 4. Experimental results of the single-keyword search. (a) The search time with increasing identifiers in the results. (b) The search time per identifier with
increasing identifiers in the results.

4.4. Multi-keyword search

We conduct experiments for multi-keyword search over the traditional method and our proposed method when the number of
keywords ranges from 2 to 7. Such numbers are reasonable because we seldom use too many keywords to search databases. The
traditional method is to apply the single-keyword search protocol multiple times and take the intersection of the results as the
final output. In our method, we set 𝛽 to be 10 since no more than 0.05% keywords appear in at least 10% identifiers for all the
82

three databases, as shown in Fig. 3. We run each set of experiments for 100 times. The comparison results in terms of the time and

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Fig. 5. Experimental results of the multi-keyword search. (a) The search time with increasing keywords in the request. (b) The number of stored identifiers (financial
overhead) with increasing keywords in the request.

financial overhead are shown in Fig. 5. Note that extreme cases, e.g., all the keywords are of high frequencies, are not included in
the experiments because the keywords are randomly generated.

In terms of the time overhead, the intersection method is significantly affected by the number of keywords because the inter-

sections of more sets should be calculated when the number of keywords increases. Regarding our method, the time overhead to
perform a multi-keyword search query does not significantly vary when there are more keywords. The reason is that there will be
few candidate identifiers after filtering the database using the first low-frequency keyword. Furthermore, just a single step of tag
comparison will be added to the computational overhead when there is one more keyword. When seven keywords are the input, the
traditional method demands up to 19.6 s, 37.1 s, and 54.1 s. In contrast, our proposed method only needs 15.8 s, 18.2 s, and 20.0 s
for the three datasets, respectively. We repeat a thousand times to choose a random number of two to seven keywords and perform
the traditional and proposed multi-keyword search protocols. The results show that our proposed multi-keyword search protocol is
superior to the traditional approach, with an average of 14.67% shorter query time.

Regarding the financial overhead of multi-keyword search, the data storage operations dominate compared to others. The reason
is that the data is stored via confirming blockchain transactions, which is costly. As a result, we only consider the number of
identifiers written to the smart contract state concerning the financial cost. Regarding the traditional method, the number of stored
identifiers accumulates up to 60% when there are five keywords instead of two. The amount remains nearly the same when there
are 5 or more keywords. The reason is that there will be few identifiers with the same 5 or more keywords. The financial cost of
our proposed approach is remarkably saved when there are more keywords because the smart contract writes the result only once.
Besides, the number of eligible identifiers decreases with more filtering keywords. For example, when there are 7 keywords in the
search query, the traditional method stores up to 262, 727, 1, 249, 819, and 1, 769, 918 identifiers, while our proposed method only
stores 1, 485, 5, 342, and 12, 342 transactions for the three datasets, respectively. The reduction of financial overhead is remarkable.
We evaluate the financial overhead similar to time overhead. The results show that, on average, our proposed multi-keyword search
protocol outperforms the traditional intersection approach by 59.96% in terms of the financial cost.

5. Conclusion and future directions

In this work, we propose a secure and efficient ITS data-sharing system with the support of database setup, dynamic update, and
multi-keyword search. To the best of our knowledge, this work is the first to present an efficient multi-keyword search protocol over
the blockchain. The main technical contributions lie in leveraging a bloom filter to select a low-frequency keyword in a search query
and filtering the ITS database using the keyword to improve the search efficiency significantly. The proposed technique is common
for crucial blockchain applications other than ITS. The future directions are twofold as follows.

On the one hand, it is highly demanded to design high-performance protocols supporting expressive queries, e.g., range, boolean,
and structured queries, to make a blockchain system act like a search engine or a database in terms of query support and performance.
These queries will enable blockchain-based ITS with support for map crowdsourcing, accurate localization, route planning, etc. On
the other hand, different techniques, e.g., verifiable computation and searchable encryption, are currently employed to provide
integrity and privacy. However, the techniques can hardly be integrated. As a result, it is essential to design a general framework or
83

cryptographic primitive guaranteeing integrity and privacy simultaneously.

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The work was supported by the Research Institute for Artificial Intelligence of Things, The Hong Kong Polytechnic University,
Hong Kong Research Grant Council Theme-based Research Scheme No. T41-603/20-R, Collaborative Research Fund No. C2004-21GF,
and Research Impact Fund No. R5034-18 and No. R5009-21, Shenzhen Municipal Science and Technology Innovation Commission
No. SGDX2020110309520302, National Natural Science Foundation of China No. 61802383, Research Project of Pazhou Lab for
Excellent Young Scholars No. PZL2021KF0024, and Guangzhou Basic and Applied Basic Research Foundation No. 202201010330
and No. 202201020162.

References

[1] P.S. Almeida, C. Baquero, N. Preguiça, D. Hutchison, Scalable bloom filters, Inf. Process. Lett. 101 (2007) 255–261.

[2] M. Autili, L. Chen, C. Englund, C. Pompilio, M. Tivoli, Cooperative intelligent transport systems: choreography-based urban traffic coordination, IEEE Trans.
Intell. Transp. Syst. 22 (2021) 2088–2099.

[3] C. Cai, J. Weng, X. Yuan, C. Wang, Enabling reliable keyword search in encrypted decentralized storage with fairness, IEEE Trans. Dependable Secure Comput.
18 (2018) 131–144.

[4] L. Chen, W.K. Lee, C.C. Chang, K.K.R. Choo, N. Zhang, Blockchain based searchable encryption for electronic health record sharing, Future Gener. Comput. Syst.
95 (2019) 420–429.

[5] J. Cui, F. Ouyang, Z. Ying, L. Wei, H. Zhong, Secure and efficient data sharing among vehicles based on consortium blockchain, IEEE Trans. Intell. Transp. Syst.
23 (2022) 8857–8867.

[6] N. Deepa, Q.V. Pham, D.C. Nguyen, S. Bhattacharya, B. Prabadevi, T.R. Gadekallu, P.K.R. Maddikunta, F. Fang, P.N. Pathirana, A survey on blockchain for big
data: approaches, opportunities, and future directions, Future Gener. Comput. Syst. 131 (2022) 209–226.

[7] M. Dibaei, X. Zheng, Y. Xia, X. Xu, A. Jolfaei, A.K. Bashir, U. Tariq, D. Yu, A.V. Vasilakos, Investigating the prospect of leveraging blockchain and machine
learning to secure vehicular networks: a survey, IEEE Trans. Intell. Transp. Syst. 23 (2022) 683–700.

[8] A. Gervais, G.O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, S. Capkun, On the security and performance of proof of work blockchains, in: ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 3–16.

[9] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions, J. ACM 33 (1986) 792–807.

[10] C. Gosman, T. Cornea, C. Dobre, F. Pop, A. Castiglione, Controlling and filtering users data in intelligent transportation system, Future Gener. Comput. Syst. 78
(2018) 807–816.

[11] Z. Guan, N. Wang, X. Fan, X. Liu, L. Wu, S. Wan, Achieving secure search over encrypted data for e-commerce: a blockchain approach, ACM Trans. Internet
Technol. 21 (2020) 1–17.

[12] J. Guo, X. Ding, T. Wang, W. Jia, Combinatorial resources auction in decentralized edge-thing systems using blockchain and differential privacy, Inf. Sci. 607
(2022) 211–229.

[13] V. Hassija, V. Gupta, S. Garg, V. Chamola, Traffic jam probability estimation based on blockchain and deep neural networks, IEEE Trans. Intell. Transp. Syst. 22
(2020) 3919–3928.

[14] R.W. van der Heijden, S. Dietzel, T. Leinmüller, F. Kargl, Survey on misbehavior detection in cooperative intelligent transportation systems, IEEE Commun. Surv.
Tutor. 21 (2018) 779–811.

[15] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, K. Ren, Searching an encrypted cloud meets blockchain: a decentralized, reliable and fair realization, in: IEEE Conference
on Computer Communications, IEEE, 2018, pp. 792–800.

[16] U. Javaid, M.N. Aman, B. Sikdar, DrivMan: driving trust management and data sharing in VANETs with blockchain and smart contracts, in: Vehicular Technology
Conference (VTC-Spring), IEEE, 2019, pp. 1–5.

[17] S. Jiang, J. Cao, J.A. McCann, Y. Yang, Y. Liu, X. Wang, Y. Deng, Privacy-preserving and efficient multi-keyword search over encrypted data on blockchain, in:
International Conference on Blockchain, IEEE, 2019, pp. 405–410.

[18] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, J. He, BlocHIE: a blockchain-based platform for healthcare information exchange, in: International Conference on Smart
Computing (SMARTCOMP), IEEE, 2018, pp. 49–56.

[19] K. Kambatla, G. Kollias, V. Kumar, A. Grama, Trends in big data analytics, J. Parallel Distrib. Comput. 74 (2014) 2561–2573.

[20] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, Y. Zhang, Blockchain for secure and efficient data sharing in vehicular edge computing and networks,
IEEE Int. Things J. 6 (2018) 4660–4670.

[21] B. Klimt, Y. Yang, The enron corpus: a new dataset for email classification research, in: European Conference on Machine Learning, Springer, 2004, pp. 217–226.

[22] B. Ko, K. Liu, S.H. Son, K.J. Park, RSU-assisted adaptive scheduling for vehicle-to-vehicle data sharing in bidirectional road scenarios, IEEE Trans. Intell. Transp.
Syst. 22 (2020) 977–989.

[23] Q. Kong, R. Lu, M. Ma, H. Bao, A privacy-preserving sensory data sharing scheme in Internet of vehicles, Future Gener. Comput. Syst. 92 (2019) 644–655.

[24] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: the blockchain model of cryptography and privacy-preserving smart contracts, in: IEEE Symposium
on Security and Privacy, 2016, pp. 839–858.

[25] H. Krawczyk, M. Bellare, R. Canetti, HMAC: keyed-hashing for message authentication, RFC 2104 (1997) 1–11.

[26] S. Kudva, S. Badsha, S. Sengupta, I. Khalil, A. Zomaya, Towards secure and practical consensus for blockchain based VANET, Inf. Sci. 545 (2021) 170–187.

[27] A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C.P.A. Ogah, Z. Sun, Blockchain-based dynamic key management for heterogeneous intelligent transportation systems,
IEEE Int. Things J. 4 (2017) 1832–1843.

[28] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, Z. Zhang, CreditCoin: a privacy-preserving blockchain-based incentive announcement network for communi-

cations of smart vehicles, IEEE Trans. Intell. Transp. Syst. 19 (2018) 2204–2220.
84

[29] X. Li, P. Jiang, T. Chen, X. Luo, Q. Wen, A survey on the security of blockchain systems, Future Gener. Comput. Syst. 107 (2020) 841–853.

http://refhub.elsevier.com/S0020-0255(23)00446-2/bib2EB06629884641DEDD03EBC28A6F558Ds1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib39E2D9E616AFE86D6F620252DBB6AB6Ds1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib39E2D9E616AFE86D6F620252DBB6AB6Ds1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib1DC413CFE66B367529A0D7F318FD6704s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib1DC413CFE66B367529A0D7F318FD6704s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibDDC391150A27768BF19061D7A09B16D4s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibDDC391150A27768BF19061D7A09B16D4s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib6D7D4FBE2C0FD7553598183444657876s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib6D7D4FBE2C0FD7553598183444657876s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibC68D476E982EF4901042FBADADFD3BD3s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibC68D476E982EF4901042FBADADFD3BD3s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib8C10D69928B4A247A834C5C387DEA1B6s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib8C10D69928B4A247A834C5C387DEA1B6s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib500C57EA52865628FFBACA7415208066s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib500C57EA52865628FFBACA7415208066s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib4DEC82DE3329FFF069225AAEEA024ACCs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibE7D69ED410066F1C0090198ECB5C0766s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibE7D69ED410066F1C0090198ECB5C0766s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibFA063928A6F03A1371BD15D096212E52s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibFA063928A6F03A1371BD15D096212E52s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibE412164BDA172D7423DE87EEC8DEB0E7s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibE412164BDA172D7423DE87EEC8DEB0E7s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib8ECAA98501D32523D8A5C9151A989166s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib8ECAA98501D32523D8A5C9151A989166s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib13BFABDB32E0C27B13341BC84168201Fs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib13BFABDB32E0C27B13341BC84168201Fs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib44C81379E6049748D1CC0DFF39432066s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib44C81379E6049748D1CC0DFF39432066s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibEF1C782A24FB4E2E491419F93F989466s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibEF1C782A24FB4E2E491419F93F989466s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib6C616EF56C9F582C017D365B13292598s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib6C616EF56C9F582C017D365B13292598s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibBB3141C2FB00CC64509424C650635A6Bs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibBB3141C2FB00CC64509424C650635A6Bs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibEA6401E32165F99C4F4BDA0238764D45s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibF18A2E9007B17A52BCB90E2C636AA9B1s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibF18A2E9007B17A52BCB90E2C636AA9B1s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib007BB0EDC33B4BC1CC6BC583C8BBF095s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibE495DFC4D08B3E48C4E80A1A26A17BD3s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibE495DFC4D08B3E48C4E80A1A26A17BD3s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib1837E059913B8C1C81262409D0E4A027s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib8A3B1E437476506581886DEDB8BB7EBEs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib8A3B1E437476506581886DEDB8BB7EBEs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib6579C629C8A791CC1CB7316A994D7A67s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibB2E6EAA16B01D12AECB8D2E7335A8073s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib24066689EAF36459E0695F8628F213EFs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib24066689EAF36459E0695F8628F213EFs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibACF7064012EAF486190E74A07DF35668s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibACF7064012EAF486190E74A07DF35668s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib15D02139232BA8AAE7C8EA03C0F89C73s1

Information Sciences 635 (2023) 72–85S. Jiang, J. Cao, H. Wu et al.

[30] Y. Li, G. Liu, Z.L. Zhang, J. Luo, F. Zhang, CityLines: designing hybrid hub-and-spoke transit system with urban big data, IEEE Trans. Big Data 5 (2018) 576–587.

[31] M.B. Mollah, J. Zhao, D. Niyato, Y.L. Guan, C. Yuen, S. Sun, K.Y. Lam, L.H. Koh, Blockchain for the Internet of vehicles towards intelligent transportation
systems: a survey, IEEE Int. Things J. 8 (2020) 4157–4185.

[32] R.A. Poldrack, K.J. Gorgolewski, Making big data open: data sharing in neuroimaging, Nat. Neurosci. 17 (2014) 1510–1517.

[33] Z. Qu, Z. Zhang, M. Zheng, A quantum blockchain-enabled framework for secure private electronic medical records in Internet of medical things, Inf. Sci. 612
(2022) 942–958.

[34] K.N. Qureshi, G. Jeon, M.M. Hassan, M.R. Hassan, K. Kaur, Blockchain-based privacy-preserving authentication model intelligent transportation systems, IEEE
Trans. Intell. Transp. Syst. (2022).

[35] J.E. Siegel, D.C. Erb, S.E. Sarma, A survey of the connected vehicle landscape—architectures, enabling technologies, applications, and development areas, IEEE
Trans. Intell. Transp. Syst. 19 (2017) 2391–2406.

[36] J. Sun, H. Xiong, S. Zhang, X. Liu, J. Yuan, R.H. Deng, A secure flexible and tampering-resistant data sharing system for vehicular social networks, IEEE Trans.
Veh. Technol. 69 (2020) 12938–12950.

[37] J. Sun, G. Xu, T. Zhang, X. Cheng, X. Han, M. Tang, Secure data sharing with flexible cross-domain authorization in autonomous vehicle systems, IEEE Trans.
Intell. Transp. Syst. (2022).

[38] X. Tang, C. Guo, K.K.R. Choo, Y. Liu, L. Li, A secure and trustworthy medical record sharing scheme based on searchable encryption and blockchain, Comput.
Netw. 200 (2021) 108540.

[39] S. Underwood, Blockchain beyond bitcoin, Commun. ACM 59 (2016) 15–17.

[40] M. Veres, M. Moussa, Deep learning for intelligent transportation systems: a survey of emerging trends, IEEE Trans. Intell. Transp. Syst. 21 (2019) 3152–3168.

[41] Q. Wei, B. Li, W. Chang, Z. Jia, Z. Shen, Z. Shao, A survey of blockchain data management systems, ACM Trans. Embed. Comput. Syst. 21 (2022) 25:1–25:28.

[42] C. Xu, C. Zhang, J. Xu, VChain: enabling verifiable Boolean range queries over blockchain databases, in: International Conference on Management of Data, 2019,
pp. 141–158.

[43] Y. Yuan, F.Y. Wang, Towards blockchain-based intelligent transportation systems, in: International Conference on Intelligent Transportation Systems, IEEE,
2016, pp. 2663–2668.

[44] C. Zhang, C. Xu, J. Xu, Y. Tang, B. Choi, GEMˆ2-tree: a gas-efficient structure for authenticated range queries in blockchain, in: International Conference on Data
Engineering, IEEE, 2019, pp. 842–853.

[45] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin, Z. Li, CityFlow: a multi-agent reinforcement learning environment for large scale
city traffic scenario, in: The World Wide Web Conference, 2019, pp. 3620–3624.

[46] J. Zhang, F.Y. Wang, K. Wang, W.H. Lin, X. Xu, C. Chen, Data-driven intelligent transportation systems: a survey, IEEE Trans. Intell. Transp. Syst. 12 (2011)
1624–1639.

[47] K. Zhang, J. Long, X. Wang, H.N. Dai, K. Liang, M. Imran, Lightweight searchable encryption protocol for industrial Internet of things, IEEE Trans. Ind. Inform.
17 (2020) 4248–4259.

[48] Y. Zhang, R. Deng, X. Liu, D. Zheng, Outsourcing service fair payment based on blockchain and its applications in cloud computing, IEEE Trans. Serv. Comput.
14 (2021) 1152–1166.

[49] J. Zhu, J. Cao, D. Saxena, S. Jiang, H. Ferradi, Blockchain-Empowered Federated Learning: Challenges, Solutions, and Future Directions, ACM Computing
85

Surveys, 2022.

http://refhub.elsevier.com/S0020-0255(23)00446-2/bibBDC3DFC4162E17810B7C15020F54AC10s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibFAF4E333F2D04235DC3C37DC43B470F3s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibFAF4E333F2D04235DC3C37DC43B470F3s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib4639A39201C1F11EB4AC3628E929B707s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib89544FF2F5C8D042E57478000488FD88s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib89544FF2F5C8D042E57478000488FD88s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibA5466451DF62BC818904DF031113714As1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibA5466451DF62BC818904DF031113714As1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib9F0B77DE6803ED5882FE0567295CA98Cs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib9F0B77DE6803ED5882FE0567295CA98Cs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib898DECA68B00D778AF15AAC17437C664s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib898DECA68B00D778AF15AAC17437C664s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibB4003307AEA228E8F2862432F0EEF2C3s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibB4003307AEA228E8F2862432F0EEF2C3s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib9679BD0357410CCD3913928C350E78CFs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib9679BD0357410CCD3913928C350E78CFs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib7561F63D2359ED28DE0B6B0CB278B8EBs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib0072C2A00729A01574DDD343FD4015BBs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibC5E85ADF8FB6C55E8DFE82B5CE47FCEFs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib25C9563309FC7F054291F1680C6FF2CEs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib25C9563309FC7F054291F1680C6FF2CEs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibEE9BAA00E93AC2E11AA797CD4D4ABAC4s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibEE9BAA00E93AC2E11AA797CD4D4ABAC4s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibE589A400B4529F43F506F6FB64738386s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibE589A400B4529F43F506F6FB64738386s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibA7F8FA6316FEAF9E0791F008CE89F1C7s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibA7F8FA6316FEAF9E0791F008CE89F1C7s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib4A2DAC9827EC664889D6855127697486s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib4A2DAC9827EC664889D6855127697486s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib798E498DB99EB1B72537878A54B64E80s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bib798E498DB99EB1B72537878A54B64E80s1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibF06285014895591733089B3FDB896EADs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibF06285014895591733089B3FDB896EADs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibB19B2955C6898F61D413CA62932AE2ABs1
http://refhub.elsevier.com/S0020-0255(23)00446-2/bibB19B2955C6898F61D413CA62932AE2ABs1

	Privacy-preserving and efficient data sharing for blockchain-based intelligent transportation systems
	1 Introduction
	2 Related work
	2.1 Blockchain-based intelligent transportation systems
	2.2 Data sharing in intelligent transportation systems
	2.3 High-performance search over blockchain

	3 Secure and efficient ITS data sharing
	3.1 System overview
	3.2 Database setup
	3.3 Dynamic update
	3.4 Multi-keyword search

	4 Performance evaluation
	4.1 Experimental settings
	4.2 Setup and update
	4.3 Single-keyword search
	4.4 Multi-keyword search

	5 Conclusion and future directions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

