
PolyChain: a Generic
Blockchain as a Service Platform

Shan Jiang, Jiannong Cao, Juncen Zhu, and Yinfeng Cao

Department of Computing, The Hong Kong Polytechnic University
{cssjiang, csjcao, csjzhu1, csyfcao}@comp.polyu.edu.hk

Abstract. In recent years, blockchain technology has been attracting
intensive attention from both the industries and academia because of
its capability of rebuilding trust in trustless environments. There are in-
creasing demands for developing and delivering blockchain applications
and services in an agile and continuous way. To this end, Blockchain
as a Service (BaaS) emerges which refers to cloud-based blockchain in-
frastructure developed by a vendor allowing users to develop, host, and
use their own blockchain components, functions, and applications. There
are many BaaS platforms developed by industries and academia, e.g.,
Bitcoin, Ethereum, and Hyperledger Fabric. However, they are either
limited in scalability or difficult for configuration and customization. In
this paper, we propose and develop PolyChain, a generic BaaS plat-
form with high modularity, flexibility, scalability, reliability, and security,
which are achieved with the following three design principles. First, each
blockchain node is designed as four modularized components, e.g., net-
work, storage, consensus, and application, based on the functionalities.
Second, the components in a logic blockchain node interact via com-
munication interfaces and can be deployed on different physical nodes.
Finally, the component deployment is optimized based on the capabilities
of the physical nodes. We believe PolyChain may benefit the industries
and academia in agile development and continuous delivery of blockchain
prototypes and applications.

Keywords: Blockchain · Blockchain as a Service · Blockchain Platform
· Blockchain Architecture · Blockchain Applications

1 Introduction

Blockchain is a technology of distributed ledger for trustless data management
with auditability. In 2008, Nakamoto developed Bitcoin [10], which is a kind
of cryptocurrency and also the first application of blockchain. Later on, the
academic and industries have developed a wide range of applications based on
blockchain leveraging its distinctive features of decentralization, transparency,
and immutability. The application domains range from cryptocurrencies [14],
education [13], healthcare [7], to manufacturing [6], etc.

The development of blockchain technology mainly experienced three stages:
1.0, 2.0, and 3.0+. blockchain 1.0 is a programmable currency, e.g., Bitcoin [10],



related to money transfer, remittance, and digital payment. With the integra-
tion of smart contracts in blockchain systems, the blockchain technology enters
the 2.0 era, in which the representative application is Ethereum [14]. Since the
2.0 era, blockchain has received unprecedented attention all around the world,
and enterprises began to develop blockchain-based applications. As a result,
enterprise-customized blockchain solutions (blockchain 3.0+) began to appear,
in which Hyperledger Fabric [1] is an outstanding project.

With the popularity of blockchain technology, there are increasing demands
for developing and delivering blockchain applications and services agilely and
continuously. Moreover, many start-ups are eager to promote blockchain-related
entrepreneurship even without enough hardware. The technology push and mar-
ket pull give birth to the concept of blockchain as a service (BaaS), which refers
to cloud-based blockchain infrastructure developed by a vendor allowing users to
develop, host, and use their blockchain components, functions, and applications.

At present, many enterprises have launched the BaaS platforms, among which
Bitcoin, Ethereum, and Hyperledger Fabric are the most popular ones. However,
they are either limited in scalability or difficult for configuration and customiza-
tion. In academia, the researchers have proposed several BaaS solutions, however,
they are either conceptual [11][12], for specific applications [2][3][8][4], not de-
ployed in real-world applications [9][17]. The evolution of blockchain demands a
generic BaaS platform while existing platforms can hardly provide.

In this paper, we propose PolyChain, a generic BaaS platform with distinctive
advantages of flexibility, scalability, reliability, security, and modularity. The
main contributions of this paper are as follows:

– We design PolyChain, a generic BaaS platform that may benefit the indus-
tries and academia in agile development and continuous delivery of blockchain
prototypes and applications.

– We evaluate PolyChain extensively in terms of flexibility, scalability, relia-
bility, security, and modularity.

– We deploy PolyChain with three example applications in authenticable tran-
scripts, big data sharing, and food traceability.

The rest of this paper is organized as follows. In Sec. 2, we introduce the
related work and articulate the motivations of this work. In Sec. 3, we introduce
the five design goals and three design principles of PolyChain. Sec. 4 presents
the system architecture and component design of PolyChain. Three example
applications based on PolyChain are demonstrated in Sec. 5. Finally, Sec. 6
concludes the paper.

2 Related Work

In this section, we introduce the existing BaaS platforms in industry and academia
separately and analyze their shortcomings.

In industry, Bitcoin [10], Ethereum [14], and Hyperledger Fabric [1] are the
three representative BaaS platforms in blockchain 1.0, 2.0, and 3.0+, respec-
tively. Bitcoin, a cryptocurrency invented in 2008, is the first application of



blockchain. Although Bitcoin is a great success whose market capitalization hit
1 trillion US dollars in 2021, it suffers from the issues of poor scalability, no
support for smart contracts, and difficulties in customization. As a result, the
enterprises seldom employ Bitcoin as the BaaS platform.

In 2014, Ethereum was initiated with the support of smart contracts. The
developers can freely develop decentralized applications by writing smart con-
tracts on Ethereum. Microsoft announced in November 2015 that it provides
Ethereum Blockchain as a Service (EBaaS) on Microsoft Azure. EBaaS allows
financial service customers and partners to quickly build and test their applica-
tions at a low cost in a ready-made development/test/production environment. It
allows users to use industry-leading frameworks to quickly create private, public,
and consortium-based blockchain environments and distribute their blockchain
products through Azure’s World Wide distributed platform. This makes Azure
an excellent development/test/production environment for blockchain applica-
tions. However, they still have shortcomings, such as insufficient scalability and
difficulties to customize the consensus mechanism.

Hyperledger Fabric is a permissioned blockchain infrastructure providing a
modular architecture with a delineation of roles among the nodes in the infras-
tructure, smart contract execution environments, and configurable consensus
and membership services. For example, the IBM blockchain network is built on
the Hyperledger Fabric stack. Although Hyperledger Fabric is developing very
fast, it merely supports public blockchain, provides insufficient native consensus
mechanisms, and is very difficult for inexperienced developers to use.

Besides Bitcoin, Ethereum, and Hyperledger Fabric, large enterprises such as
Amazon, Baidu, and Alibaba are also developing their BaaS platforms as parts
of their cloud services.

In academia, the researchers have been developing BaaS solutions. In [11],
Samaniego et al. propose BaaS for the first time. However, it is conceptual and
only shows a set of experimental results. Singh et al. analyze the management,
governance, and trust issues of BaaS platforms while merely touch the technical
details [12]. In [2] and [3], Alia et al. and Aujla et al. consider the integration of
BaaS with end-edge-cloud networks and software-defined networks for applica-
tions in unmanned aerial vehicles and smart city, receptively, which are pioneer
but lacks design details of BaaS.

The two recent research works introduce two BaaS platforms, i.e., NutBaaS
[17] and uBaaS [9]. NutBaaS is a BaaS platform providing blockchain service over
cloud computing environments, such as network deployment and system moni-
toring, smart contracts analysis, and testing. Based on these services, developers
can focus on the business code to explore how to apply blockchain technology
more appropriately to their business scenarios, without bothering to maintain
and monitor the system. Although NutBaaS has a clear system architecture with
technical approaches to enhance reliability and security, the design of the dif-
ferent layers remains unclear. In uBaaS, various services including deployment
as a service, design pattern as a service, and auxiliary services are provided.
The deployment of uBaaS is not bound to the cloud service providers or the



blockchain platform. The proposed solutions are evaluated using a real-world
quality tracing use case in terms of feasibility and scalability. UBaaS focuses on
the vendor-irrelevant design and provides the implementation details. However,
the advantages of uBaaS in terms of security, flexibility, etc. over existing BaaS
platforms are unclear.

To conclude, the existing BaaS platforms from academia and industry are not
enough in terms of modularity, flexibility, scalability, reliability, and security. The
evolution of blockchain technology demands a generic BaaS platform.

3 PolyChain Design Goals & Principles

In this section, we introduce five primary goals of PolyChain and three design
principles to meet the goals.

3.1 Design Goals

PolyChain pursues the following five goals:

– Modularity : refers to the degree of decomposition of the components. High
modularity makes it possible to reuse the developed components, reduces
the development costs, and enables transplantation of the components.

– Flexibility : refers to the degree of support for diversified customization. Users
can flexibly choose system parameters, components, consensus protocols to
build a blockchain system that meets their own development requirements.

– Scalability : refers to the ability of the system to remain high-performance
when the workload increases. It is embodied in the reasonable arrangement
of resources and the optimal allocation of hardware.

– Reliability : means that the ability of the system to run continuously and
stably even with internal faults.

– Security : means that the ability of the system to resist various external
attacks. In particular, in the BaaS platform, the main resistance is the single
point of failure, that is, the broken of one component will not cause the failure
of the entire system.

3.2 Design Principles

PolyChain employs three design principles, component modularization, distributed
deployment, and resource optimization, to achieve the five design goals.

Component Modularization In a blockchain system, normally there are
many fixed components and layers for different functionalities that make the
entire system complex, bloated and hard to develop, thus making it harder to
design applications over it. In Ethereum, there are Ethereum virtual machines,
miners, blocks, transactions, consensus algorithms, accounts, smart contracts,
mining nodes, etc. The developers almost only can design applications through



smart contracts instead of modifying every component they need like consensus.
In Hyperledger Fabric, there are also many fixed components and relationships
like peer, orderer, endorser, and membership service provider. The design space
of developers is also very limited since they need to choose and combine these
components to form their network, which means it is hard to change the con-
sensus algorithm or database choices.

The reason why there are many fixed components, and most of them are
unmodifiable is that they do not separate various functionalities well within the
entire blockchain system, which brings difficulties and costs for developers to
design the application they want.

We address the issue by decomposing each blockchain node into four com-
ponents, namely application component, consensus component, network compo-
nent, and storage component, based on the functionalities. Each component focus
on one dedicated group of functionality. Such an approach achieves modularity
and makes the system easy to understand, develop, and maintain. Meanwhile,
since the interface of each module is well-defined, their implementation can be
changed independently according to different application/experiment need with-
out rebuilding the rest of the system which achieves flexibility. Because the func-
tions are divided into various components, each component does not affect each
other, the security of the system is also guaranteed.

Distributed Deployment Deployment is another key issue for the current
blockchain platform. In Ethereum, for the smart contract, developers need to
compile their Solidity code into byte-codes, use APIs for deployment, and finally
use the web3 library to call the contracts. Such procedures are unfriendly for
those who not familiar with blockchain.

As a BaaS platform, we provide multiple deployment methods through web
interfaces. Developers can transform the components they design into an exe-
cutable program, install script or Docker image then upload and configure them,
and finally form a blockchain network. In this way, developers can also Initialize
or update their components or nodes in platforms, with monitoring of them.
This deployment method ensures the flexibility of the platform.

Logical

Nodes

Node 1

(N1)

N1-AC

N1-NC

N1-CC

N2-CC

Node 2

(N2)

N2-AC

N2-NC

N3-CC

N4-CC

Node 3

(N3)

N3-AC

N3-NC

N4-AC

N4-NC

Node 4

(N4)

N1-SC

N3-SC

N2-SC

N4-SC

Mapping

Physical

Machines

AC: Application Component; CC: Consensus Component; SC: Storage Component; NC: Network Component

Fig. 1. PolyChain Deployment Model



We propose a novel distributed deployment scheme to ensure the reliabil-
ity and security of the system. First, we identify the concepts of logical nodes
and physical machines. Each logical node consists of four components while the
components of a logical node can be deployed in different physical machines.
As shown in Fig. 1, the application component, network component, and con-
sensus component of logical node 1 are in physical machine 1 while the storage
component of logical node 1 is in physical machine 4.

The advantage of the deployment scheme is that it can resist single-point
attacks very well. The damage of one component will not affect the operation
of the entire blockchain network. Moreover, the physical machines may have
different specialized capabilities and are good at hosting different components.
For example, storage components can be deployed in physical machines with a
high capability of storage.

Resource Optimization Finally, we optimize the component deployment based
on the functions of physical nodes. We mainly use the following two methods to
ensure the scalability of the platform.

Each major component is also a portable distributed sub-system, which
means that the components can be implemented in different threads/processes
or hosts. Some components, e.g. application component and consensus compo-
nent, may be implemented in a parallelized manner to maximize transaction
processing throughput. In contrast, some components, e.g. storage component,
may be implemented in a distributed manner to scale for intensive and complex
querying and supporting the huge data volume. The components communicate
with each other with fixed protocols and frameworks. Such an approach also
enables the scalability and cross-platform capability of the system.

Meanwhile, the components in the platform are reusable. We provide some
pre-defined components, e.g., proof-of-work consensus component for developers
to use and form their network at the beginning. Developers can also reuse their
components built by themselves. This approach will reduce the development cost
and make the design of applications more flexible.

4 System Architecture and Component Design

In this section, we demonstrate the system architecture and component design
of PolyChain in detail.

4.1 System Architecture

In PolyChain, there are two kinds of entities, i.e., users and PolyChain nodes. The
users generate application data and enjoy the services provided by PolyChain.
The PolyChain nodes interact with each other to maintain the blockchain and
provide services to the users.

Fig. 2 depicts the system architecture of PolyChain. The blockchain is main-
tained by a network of nodes connecting with each other. Each PolyChain node
consists of four components with functionalities as follows:



Transaction

Memory Pool

Transaction

Generation

Block

Generation

Application

Logic

Blockchain

Explorer

Blokcchain

State Update

Application Component

Consensus Component

Generated Transactions

Application

Data

Blockchain

Data

Storage
Component

Transaction

Sync.

Block

Sync.

Network
Component

Confirmed
Blocks

Confirmed
Transactions
& App Data

Transactions
& Confirmed

Blocks

Other
PolyChain

Nodes

Users

PolyChain
Node

Fig. 2. PolyChain System Architecture

– Application component (AC) manages the application logic interacting with
the users. Particularly, it interacts with the users through predefined applica-
tion interfaces, generates raw transactions, and applies the confirmed trans-
actions to execute the application logic. Furthermore, it provides interfaces
to display the blockchain data, i.e., confirmed blockchain and transactions.

– Consensus component (CC) packs the raw transactions into a linked chain
of blocks agreed by the PolyChain network. Such a component maintains
the pool of raw transactions, packs transactions into blocks, and updates
the blockchain state given the blocks from other nodes.

– Storage component (SC) manages the application data and blockchain data,
which implies the application states and blockchain states, respectively.

– Network component (NC) connects the PolyChain node with other ones and
synchronizes the transactions and blocks.

The PolyChain system architecture allows the components to be implemented
separately. In the following, we explain the design of the four components.

4.2 Application Component

As shown in Fig. 3, there are three APIs in the application component: TxGen
(invokable by users), OnConfirmedTx (invokable by the storage component),
and GetData (invokable by users).

– TxGen takes data from the users as input, generates a transaction based on
pre-defined formats, and sends the generated transaction to the consensus
component (CC.OnNewTx). In PolyChain, a transaction is a dictionary



Application

Component

TxGen

GetData

OnConfirmedTx
Storage

Component

Users

Fig. 3. Design of Application Component

with pre-defined fields. The purpose of TxGen is to fill in the fields based
on the user data and application logic.

– OnConfirmedTx takes the confirmed transactions from the storage com-
ponent as input, generates application data by applying the transactions, and
submits the application data to the storage component (SC.OnAppData).

– GetData takes parameters from the users as input and responds to the re-
quested data. The requested data can be the application and blockchain data
requested from the storage component (SC.GetData, and even the trans-
action memory pool from the consensus component (CC.GetMemPool)
depending on the willingness of the developers.

4.3 Consensus Component

Consensus

Component

OnNewTx

OnNewBk

GetMemPool
Application
Component

Network
Components

Fig. 4. Design of Consensus Component

As shown in Fig. 4, there are three APIs in the consensus component: On-
NewTx (invokable by the application and network components), OnNewBk
(invokable by the network component), and GetMemPool (invokable by the
application and network components).

– OnNewTx takes a new transaction tx as input and updates the transac-
tion memory pool. It checks whether tx is already in the memory pool or the
blockchain. If not, it will send tx to the network component (NC.OnNewTx)
for broadcasting in the blockchain network.

– OnNewBk takes a new block bk as input and updates the blockchain state.
It checks whether the block height is correct and whether the hash values
match. If yes, it will store bk in the storage component (SC.OnConfirmedBk)



and send bk to the network component (NC.OnNewBk) for broadcasting
in the blockchain network.

– GetMemPool responds to the requests with the set of unconfirmed trans-
actions in the memory pool. Such an API is useful for transaction synchro-
nization and state debug.

4.4 Storage Component

Storage

Component

OnAppData

GetData

OnConfirmedBk
Consensus
Component

Application
Component

Publicly
Accessible

Fig. 5. Design of Storage Component

As shown in Fig. 5, there are three APIs in the storage component: OnCon-
firmedBk (invokable by the consensus component), OnAppData (invokable
by the application component), and GetData (publicly accessible).

– OnConfirmedBk takes a block as input, updates the blockchain data, and
sends the confirmed transactions in the block to the application component
(AC.OnConfirmedTx).

– OnAppData takes the application data as input for storage.
– GetData responds with the corresponding data based on the parameters.

4.5 Network Component

Network

Component

OnNewTx

GetLinkage

OnNewBk
Consensus
Component

Other Network
Components

Fig. 6. Design of Network Component

As shown in Fig. 6, there are three APIs in the network component: On-
NewTx (invokable by the consensus component and other network components),
OnNewBk (invokable by the consensus component and other network compo-
nents), and GetLinkage (invokable by other network components).



– OnNewTx takes a transaction as input and sends it to the consensus com-
ponent (CC.OnNewTx) and other network components (NC.OnNewTx)
for broadcasting purpose.

– OnNewBk takes a block as input and sends it to the consensus compo-
nent (CC.OnNewBk) and other network components (NC.OnNewBk) for
broadcasting purpose.

– GetLinkage responds to the request with the set of connected network
components of other blockchain nodes.

5 Case Studies

In this section, we demonstrate three case studies, i.e., authenticable transcripts,
big data sharing, and food traceability, with the help of PolyChain.

5.1 PolyScript: Authenticable University Record Management

In almost all universities, many procedures are complicated and time-consuming
because of the numerous data distributed among departments. For example, the
confirmation of the examination results may go through the lecturers, depart-
mental general office, faculty general office, research office, and finally the stu-
dent portal. Blockchain can serve as a secure communication platform connecting
various university offices, which can improve the time efficiency of university af-
fairs. Moreover, electronic transcripts and certificates can be generated on the
blockchain, which is environmental-friendly, convenient, and anti-counterfeiting.
To this end, we propose PolyScript, a PolyChain-based system for authenticable
management of university records.

PolyChain Instance:

Transcript Record Chain

1. Assign courses

to lecturers

2. Get courses

waiting for scoring

3. Input marks

of students
4. Get authenticable

transcripts

Academic

Registry

Lecturer Student

Fig. 7. PolyScript System Architecture

Fig. 7 depicts the system architecture of PolyScript. The university (or mul-
tiple universities as an alliance) will maintain the PolyChain instance, which is
responsible for storing the university records, e.g., student registration informa-
tion, course information, and examination results.



Each transaction on the PolyChain instance contains the following fields:

– Time: the timestamp when the piece of record is submitted.
– StuID: the unique identifier of the student.
– CourseID: the unique identifier of the course.
– LecturerID: the unique identifier of the lecturer.
– YearSem: the academic year and semester of the piece of record.
– Grade: the examination result.

With PolyChain, a set of university record management functions can be
supported as follows:

– Course assignment (open to the academic registry): assigning courses to the
corresponding lecturers.

– Marking (open to the lecturers): input marking results of the students.
– Transcript generation (open to the students): generating authenticable tran-

scripts based on the marking results stored on PolyChain.

5.2 AI3: PolyChain enabled Big Data Sharing

Big data sharing refers to the act of the data sharers to share big data so that the
sharees can find, access, and use it in the agreed ways. In recent years, big data
sharing is more and more popular due to its wide applications such as big data
trading and cross-domain data analytics. Traditional big data sharing platforms
can be classified into data hosting centers and data aggregation centers. However,
they suffer from either privacy or authenticity issues. To this end, we cooper-
ate with Huawei Technologies Co., Ltd. to develop AI3, a PolyChain-based big
data sharing platform [15][5]. In AI3, we propose to leverage two loosely-coupled
blockchains, metadata chain and sharing data chain, to guarantee the privacy of
the original data and the authenticity of the sharing records.

Raw Data

Publish

Metadata Use Data

Records

PolyChain Instance 1:

Metadata Chain

PolyChain Instance 2:

Sharingdata Chain

Fig. 8. AI3 System Architecture

Fig. 8 depicts the AI3 system architecture. All the data sharers and sharees
join the blockchain network and maintain two PolyChain instances, i.e., meta-
data chain and sharing data chain, which are responsible for storing the shared



metadata and sharing records, respectively. Note that only the metadata will be
publicly accessible while the original data is stored by the data sharers locally.

Each transaction on the metadata chain contains fields as follows:

– Time: the timestamp when the metadata is published.
– Publisher: the one who published the metadata.
– URL: a publicly accessible web address to the metadata.
– DataHash: the hash value of the original data.
– FileType: the type of the original file.

Each transaction on the sharing data chain contains the following fields:

– TimeRequest: the timestamp of requesting data.
– timeSharing: the timestamp of sharing data.
– Sharer: the one who share the data.
– Sharee: the one who use the data.
– MetadataHash: the unique identifier of the metadata to be shared (linked

with metdata chain).

With the above two PolyChain instances, a set of big data sharing functions
can be supported within AI3:

– Data publishing : the data sharers publish their data using metadata chain.
– Data searching : the data sharees use keywords to search the available data

on the metadata chain.
– Data transfer : the data sharers transfer the requested data to data sharees

with records on sharing data chain.
– Nearline computation: the data sharees use predefined functions to perform

the calculation on the shared data with permissions from the data sharers.
The data sharing records are also stored on sharing data chain.

5.3 Food Traceability

Food traceability refers to the ability to follow the trajectories of food prod-
ucts and their ingredients through all steps along the food supply chain. Food
traceability helps the stakeholders to better manage the food supply chain and
increase of confidence of the customers. Blockchain technology has been widely
adopted in food traceability because the transparent and immutable data on
blockchain makes the product tracing results remarkably reliable. We cooperate
with Alibaba Group Holding Limited to develop a federated blockchain-based
solution for ensuring the provenance and authenticity of food items [16].

Fig. 9 depicts the system architecture of the PolyChain-based food traceabil-
ity system. The stakeholders along the food supply chain will join the blockchain
network as federated members and maintain the PolyChain instance, which is
responsible for storing the food transactional records and providing query ser-
vices. There are three kinds of roles, i.e., federated member, administrator, and
customer, who have different authorities for querying the blockchain data.

Each transaction on the PolyChain instance contains the following fields:



PolyChain Instance:

Food Traceability Chain

Food Item

Query
Customer

Food Info

Query

Food Info

Submission
Admin

Forward &

Backward Query

Register

& Login

Federated

Member

Fig. 9. System Architecture of Blockchain Food Traceability

– Time: the timestamp when the record is submitted.
– Location: the location when the record is submitted.
– Publisher: the one who submitted the record.
– SrcItems: the unique identifiers of the source food items.
– DstItems: the unique identifiers of the result food items.
– Description: description information, e.g., access control info, submitted

by the publisher.

With PolyChain, a set of food traceability functions can be supported:

– Food item query (open to the customers): given the identifier of a food item,
query the origin.

– Food info submission (open to the federated members): submit the food
product records.

– Food info query (open to the federated members): given the identifier of a
food item, query all the related information along the food supply chain.

– Forward and backward query (open to the administrators): given the identi-
fier of an item (it is not necessarily a food item, e.g., can be the ingredients),
query all the records about the source and result items.

6 Conclusion

In this paper, we propose and develop PolyChain, a BaaS platform with flex-
ibility, scalability, reliability, security, and modularity. We employ the design
principles of component modularization, distributed deployment, and resource
optimization to provide the above distinctive features. PolyChain is implemented
and deployed with applications of authenticable transcripts, big data sharing,
and food traceability, which shows its practicability. In the future, we will eval-
uate the performance of PolyChain extensively, add support of smart contracts,
and deploy more real-world applications.



7 Acknowledgments

This research is supported by GDSTC Key Technologies R&D Programme with
project number 2020B010164002 and Hong Kong RGC Research Impact Fund
(RIF) with project number R5034-18.

References

1. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A.,
Enyeart, D., Ferris, C., et al.: Hyperledger fabric: a distributed operating system
for permissioned blockchains. In: ACM EuroSys. pp. 1–15 (2018)

2. Asheralieva, A., Niyato, D.: Distributed dynamic resource management and pric-
ing in the iot systems with blockchain-as-a-service and uav-enabled mobile edge
computing. IEEE Internet of Things Journal 7(3), 1974–1993 (2019)

3. Aujla, G.S., Singh, M., Bose, A., Kumar, N., Han, G., Buyya, R.: Blocksdn:
Blockchain-as-a-service for software defined networking in smart city applications.
IEEE Network 34(2), 83–91 (2020)

4. Chen, Y., Gu, J., Chen, S., Huang, S., Wang, X.S.: A full-spectrum blockchain-as-
a-service for business collaboration. In: IEEE ICWS. pp. 219–223 (2019)

5. Jiang, S., Cao, J., McCann, J.A., Yang, Y., Liu, Y., Wang, X., Deng, Y.: Privacy-
preserving and efficient multi-keyword search over encrypted data on blockchain.
In: IEEE Blockchain. pp. 405–410 (2019)

6. Jiang, S., Cao, J., Wu, H., Yang, Y.: Fairness-based packing of industrial iot data
in permissioned blockchains. IEEE Transactions on Industrial Informatics (2020)

7. Jiang, S., Cao, J., Wu, H., Yang, Y., Ma, M., He, J.: Blochie: a blockchain-based
platform for healthcare information exchange. In: IEEE SMARTCOMP. pp. 49–56
(2018)

8. Li, D., Deng, L., Cai, Z., Souri, A.: Blockchain as a service models in the internet
of things management: Systematic review. Transactions on Emerging Telecommu-
nications Technologies p. e4139 (2020)

9. Lu, Q., Xu, X., Liu, Y., Weber, I., Zhu, L., Zhang, W.: ubaas: A unified blockchain
as a service platform. Future Generation Computer Systems 101, 564–575 (2019)

10. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep. (2019)
11. Samaniego, M., Jamsrandorj, U., Deters, R.: Blockchain as a service for iot. In:

IEEE iThings/GreenCom/CPSCom/SmartData. pp. 433–436 (2016)
12. Singh, J., Michels, J.D.: Blockchain as a service (baas): Providers and trust. In:

IEEE EuroSP Workshops. pp. 67–74 (2018)
13. Turkanovic, M., Holbl, M., Kosic, K., Hericko, M., Kamisalic, A.: Eductx: A

blockchain-based higher education credit platform. IEEE Access 6, 5112–5127
(2018)

14. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

15. Wu, H., Cao, J., Jiang, S., Yang, R., Yang, Y., Hey, J.: Tsar: a fully-distributed
trustless data sharing platform. In: IEEE SMARTCOMP. pp. 350–355 (2018)

16. Wu, H., Cao, J., Yang, Y., Tung, C.L., Jiang, S., Tang, B., Liu, Y., Wang, X.,
Deng, Y.: Data management in supply chain using blockchain: Challenges and a
case study. In: IEEE ICCCN. pp. 1–8 (2019)

17. Zheng, W., Zheng, Z., Chen, X., Dai, K., Li, P., Chen, R.: Nutbaas: A blockchain-
as-a-service platform. IEEE Access 7, 134422–134433 (2019)


