
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 11, NOVEMBER 2021 7639

Fairness-Based Packing of Industrial IoT Data in
Permissioned Blockchains

Shan Jiang , Jiannong Cao , Fellow, IEEE, Hanqing Wu, and Yanni Yang

Abstract—In recent years, blockchain has been broadly
applied to industrial Internet of Things (IIoT) due to its
features of decentralization, transparency, and immutabil-
ity. In existing permissioned blockchain based IIoT solu-
tions, transactions submitted by IIoT devices are arbitrarily
packed into blocks without considering their waiting times.
Hence, there will be a high deviation of the transaction
response times, which is known as the lack of fairness.
Unfair permissioned blockchain decreases the quality of
experience from the perspective of the IIoT devices. More-
over, some transactions can get timeouts if not responded
for a long time. In this article, we propose FAIR-PACK, the
first fairness-based transaction packing algorithm for per-
missioned blockchain empowered IIoT systems. First, we
gain the insight that fairness is positively related to the
sum of waiting times of the selected transactions through
theoretical analysis. Based on this insight, we transform
the fairness problem into the subset sum problem, which
is to find a valid subset from a given set with subset sum
as large as possible. However, it is time consuming to solve
the problem using a brute-force approach because there is
an exponential number of subsets for a given set. To this
end, we propose a heuristic and a min-heap-based optimal
algorithm for different parameter settings. Finally, we an-
alyze the time complexity of FAIR-PACK and conduct ex-
tensive experiments. The results reveal that FAIR-PACK
is time-efficient and outperforms the existing algorithms
significantly in terms of both fairness and average trans-
action response time.

Index Terms—Blockchain, fairness, industrial Internet of
Things, transaction packing.

I. INTRODUCTION

R ECENTLY, blockchain technology has been attracting
extensive attention from both industry and academia, since

it enables trustless data storage with auditability [1]. In industrial
Internet of Things (IIoT), blockchain has shown its great poten-
tial in vehicular networks [2], smart grid [3], crowd sourcing [4],
mobile edge computing [5], etc. Generally, a blockchain is an

Manuscript received July 29, 2020; revised November 30, 2020;
accepted December 15, 2020. Date of publication December 21,
2020; date of current version July 26, 2021. This work was sup-
ported by GDSTC Key Technologies R&D Progremme under Project
2020B010164002 and the Hong Kong RGC Research Impact Fund
(RIF) under Project R5034-18. Paper no. TII-20-3639. (Corresponding
author: Jiannong Cao.)

The authors are with the Department of Computing, The Hong
Kong Polytechnic University, Hong Kong (e-mail: cssjiang@comp.polyu.
edu.hk; jiannong.cao@polyu.edu.hk; cshwu@comp.polyu.edu.hk; yan-
ni.yang@connect.polyu.hk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2020.3046129.

Digital Object Identifier 10.1109/TII.2020.3046129

append-only list of blocks, each of which includes a set of
transactions, managed by a peer-to-peer network adhering to
a protocol for internode communication and validating new
blocks [6]. The magic of blockchain lies in the protocol of
validating new blocks, i.e., consensus mechanism. In permis-
sioned blockchains, the consensus mechanism is performed
round by round, and each round consists of three phases, i.e.,
leader election, transaction packing, and block propagation. To
begin a round, all the blockchain nodes run the same leader
election algorithm to elect a transaction packer. Then, the packer
selects several transactions from its memory pool and pack them
into a block. Finally, the generated block is broadcast to the
network, and the transactions in the block get confirmed.

For IIoT systems, blockchain can be regarded as a service
for data storage. In particular, the IIoT devices send the data,
or transactions, to the blockchain, and receive the operational
results, i.e., acceptance or rejection. To improve the quality
of service, the research communities have been attempting to
propose more efficient [7] and reliable [8] algorithms for leader
election. Since the throughput of blockchain is limited, the
blockchain service is supposed to be fairly shared among multi-
ple IIoT devices. In permissionless blockchain, the IIoT devices
pay fees, in forms of native cryptocurrencies, for their transac-
tions. The nodes strategically pack those transactions with high
transaction fees into a block to earn more monetary rewards. The
fairness among the IIoT devices is naturally achieved because
the transactions with higher transaction fees tend to be served
first.

The fairness in permissioned blockchain empowered IIoT sys-
tems differs due to the lack of native cryptocurrencies and trans-
action fees. In this article, we consider fairness in permissioned
blockchain from the perspective of transaction response time.
For each transaction, its response time is the duration from its
submission to the time when a block containing this transaction
is confirmed. A permissioned blockchain is considered to be fair
if the response times of the transactions are close to each other.
That is, the transactions which are submitted first are expected to
be packed into blocks first. Unfairness leads to a high deviation
of the transaction response times. As a result, the transactions
incurring long delays will suffer from undesirable quality of
experience, which is particularly important in cognitive IIoT [9].
More seriously, some transactions get timeouts and discarded if
their response times exceed a certain period. In time-sensitive
IIoT applications, e.g., energy trading [10] and manufacturing
operation [11], the discarded transactions can lead to income
loss and even safety issues.

1551-3203 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4727-4856
https://orcid.org/0000-0002-2725-2529
mailto:cssjiang@comp.polyu.penalty -@M edu.hk
mailto:jiannong.cao@polyu.edu.hk
mailto:cshwu@comp.polyu.edu.hk
mailto:yan-ni.yang@connect.polyu.hk
https://doi.org/10.1109/TII.2020.3046129

7640 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 11, NOVEMBER 2021

Little attention has been paid to the fairness issue in permis-
sioned blockchain empowered IIoT systems although it is vital.
Transaction packing is the key to enhance the fairness because
it directly decides which transactions are packed into blocks.
The first idea is possibly first-come-first-serve (FCFS) [12].
In permissioned blockchain, the FCFS strategy is to select the
transactions with long waiting times and pack them into a block.
However, the selected subset of transactions can be invalid to be
packed into a block. For example, one transaction cannot be
packed if its dependent transactions are not confirmed yet. On
this circumstance, the next choice is supposed be generated by
the transaction packing algorithm while FCFS strategy fails. In
existing permissioned blockchains, transactions are arbitrarily
packed into blocks. An intuitive approach is to choose sub-
sets one after another randomly. This approach cannot achieve
preferable fairness since transactions with long waiting times are
not considered first. In conclusion, traditional FCFS strategy
fails to continuously generate subsets of transactions, and the
random strategy cannot achieve satisfactory fairness.

In this article, we propose FAIR-PACK, a fair transaction
packing algorithm for permissioned blockchain empowered IIoT
systems. First, we quantify the fairness according to Jain’s
fairness index [13] of response times, and define the fairness
problem in permissioned blockchains formally. Then, we gain
the insight that fairness is positively related to the sum of waiting
times of the selected transactions. In this way, we transform
the fairness problem into the subset sum problem, which is
to find a valid subset with subset sum as large as possible.
However, the number of subsets of a given set is exponential,
which makes it nontrivial to solve the subset sum problem. We
divide the subset sum problem into two individual problems
depending on the relationship between the maximum size of the
subset and the size of the given set. Furthermore, we figure out
the partial/global orders of the subsets according to the subset
sum, and propose a heuristic algorithm and a min-heap-based
algorithm to solve the two problems separately. Finally, we ana-
lyze the time complexity of FAIR-PACK and extensively evaluate
its performance in terms of fairness and average response time.
Based on the experiments, we conclude that FAIR-PACK not only
achieves better fairness, but reduces the average response time
as well. The main contributions of this article are as follows.

1) We define the fairness problem in permissioned
blockchain empowered IIoT systems. We propose an
overall transaction packing algorithm FAIR-PACK and
transform it into two subset sum problems via theoretical
analysis. To the best of our knowledge, this is the first
work on the transaction fairness problem in permissioned
blockchain.

2) Inside FAIR-PACK, we propose a heuristic and a min-heap-
based optimal algorithm to solve the two subset sum prob-
lems separately. The performance and time complexity of
the two algorithms are formally analyzed.

3) We carry out extensive experiments on how the perfor-
mance of FAIR-PACK is influenced by the transaction
incoming rate, block generation time, block size, and
block validity ratio. The results indicate that FAIR-PACK

Fig. 1. Block generation of permissioned blockchains.

achieves better fairness and less average response time
compared to the existing works.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first introduce the system model of permis-
sioned blockchain empowered IIoT systems. Then, we define
the fairness problem in permissioned blockchains with concrete
explanations of the input, assumptions, and objective.

The block generation in a permissioned blockchain proceeds
round by round, as shown in Fig. 1. At the beginning of each
round, the blockchain network runs the leader election algorithm
to elect a leader, node i. Then, node i invokes transaction packing
algorithm to select a subset of transactions from its local memory
pool and pack them into block i. Finally, block i is propagated
in the blockchain network through broadcasting. From the per-
spective of the IIoT devices, they submit their transactions to
a random node in the blockchain network. Upon receiving the
transactions, the node stores them in the local memory pool and
broadcast the transactions to other nodes. Because broadcasting
incurs network delay, the memory pools for different nodes may
be different.

The waiting time and response time of a transaction are defined
as follows.

Definition 1: Suppose a transaction xi is submitted to
blockchain network at time si and xi is in memory pool at the
current time tc, then the waiting time of xi is ai = tc − si.

Definition 2: Suppose a transaction xi is submitted to the
blockchain network and packed into blocks at time si and ei,
respectively, then the response time of xi is ti = ei − si.

As the permissioned blockchain runs round by round, there
are more and more transactions packed into blocks. This article
studies the fairness according to Jain’s fairness index [13]. Note
that the fairness index is between 0 (exclusive) and 1 (inclusive).
A larger fairness index means better fairness and the fairness
index equals to 1 if the response times of all the transactions are
the same.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FAIRNESS-BASED PACKING OF INDUSTRIAL IOT DATA IN PERMISSIONED BLOCKCHAINS 7641

Definition 3: Suppose there are n transactions
X = {x1, . . . , xn} packed into blocks with re-
sponse times t1, . . . , tn, then the fairness
among the n transactions is defined as:

J (X) = (Σn
i=1ti)

2

n·Σn
i=1t

2
i

.
To maximize the overall fairness, we should consider not only

the response times of the transactions in blocks but also the
waiting times of the transactions in memory pool. However,
the number of transactions in blocks increases infinitely as the
permissioned block runs, which hinders the development of a
time-efficient transaction packing algorithm. In this article, we
only consider the waiting times of the transactions in memory
pool in a single round and the expected fairness of a given
packing strategy.

Definition 4: Suppose there are n transactions X , the maxi-
mum number of transactions in a block is k, and the time to make
a packed block to be committed is r. Consider a packing strategy
which packs a subset X ′ of transactions into a block in a round.
Suppose the waiting times of X ′ in the round are s1, . . . , sl
and the waiting times of the remaining transactions X \ X ′ are
t1, . . . , tm, where l +m = n, l < k, and t1 ≥ · · · ≥ tm. Then,
the expected fairness of the packing strategy in the round is
defined to be

J (X) = (Σl
i=1(si + r) + Σm

i=1(ti + r + � ik � · r))2

n · (Σl
i=1(si + r)2 +Σm

i=1(ti + r + � ik � · r)2)
. (1)

In short, the expected fairness assumes that the remaining
transactions in the memory pool are packed into blocks in FCFS
order. To this end, we aim at finding a packing strategy with the
maximum expected fairness in each round, which is formally
defined as follows.

Definition 5: Problem Ori-Fair: Given 1) a set of n trans-
actions X in memory pool at time tc with submission times
s1, . . . , sn, respectively, and 2) the maximum number k of
transactions that can be packed into a block, assuming 1) a leader
is already elected for transaction packing, 2) a subset of X can
be valid or invalid to be packed into a block, and 3) the validity
of all subsets of X are unknown before generation, we aim to
develop a transaction packing strategy to continuously generate
subsets of X until a valid subset is generated with the expected
fairness J (X) as large as possible.

In the problem, the maximum number of transactions that can
be packed into a block is given as k. The reason whyk is bounded
is that a large value of k leads to high network congestion when
the block is propagated in the network. For example, the value
of k in Bitcoin is around 3000 due to the limit of block size
and average transaction size. In this article, we consider k as an
adjustable parameter.

In the following, we explain the reasonability of the as-
sumptions. First, leader election and transaction packing are
conducted in sequence. As a result, we can use existing leader
election methods, such as [14] and [15], to select a transaction
packer to fit our assumption 1). Second, a subset of transactions
can be valid or invalid to be packed into a block for various
reasons. For example, one transaction cannot be packed if its
dependent transactions are not confirmed yet. Finally, we assume

the validities of all subsets of transactions are unknown before
the generation to separate transaction packing with block verifi-
cation. After separation, the transaction packing algorithm will
be an independent component in the blockchain, which makes
blockchain more modularized.

Our target is to develop a fair transaction packing algorithm.
The algorithm is supposed to continuously generate subsets of
transactions because a subset of transactions can be invalid and
its validity is unknown in advance.

III. FAIR-PACK: A FAIRNESS-BASED TRANSACTION

PACKING ALGORITHM

In this section, we prove that the fairness index is positively
related to the sum of waiting times of the packed transactions
in ORI-FAIR. Then, the proved property is used to transform
ORI-FAIR into the subset sum problem. Finally, we propose an
overall solution FAIR-PACK towards solving ORI-FAIR.

Theorem 1: Given a set of n transactions x1, . . . , xn in pool
with waiting times a1, . . . , an, respectively, and k transactions
are supposed to be packed, in each round, the larger the sum
of the waiting times of the packed transactions, the larger the
fairness of the packing strategy.

Proof: Consider two permutations σ and τ of (1, . . . , n),
where σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn). The two packing
strategies σ-PACK and τ -PACK pack transactions in the order of
(xσ1 , . . . , xσn

) and (xτ1 , . . . , xτn), respectively.
Assume by contradictory σ-PACK packs transactions with

larger sum of waiting times each round while τ -PACK achieves
larger fairness. By definition, we have the following properties:

Σk
i=1aσi

> Σk
i=1aτi (2)

∀2 ≤ j < �n
k
�,Σjk

i=1aσi
≥ Σjk

i=1aτi (3)

Σn
i=1aσi

= Σn
i=1aτi . (4)

Notate the time to commit a packed block as tp. Then, the
transaction response times using σ-PACK are aσ1 + tp, aσ2 +
tp, . . . , aσk+1 + 2tp, . . . , aσn

+ �nk � · tp. The transaction re-
sponse times using τ -PACK are aτ1 + tp, aτ2 + tp, . . . , aτk+1 +
2tp, . . . , aτn + �nk � · tp. To this end, the fairness of σ-PACK and
τ -PACK and their relationship are as follows:

Jσ−Pack =
(Σn

i=1(aσi
+ � ik � · tp))2

n · Σn
i=1(aσi

+ � ik � · tp)2
(5)

Jτ−Pack =
(Σn

i=1(aτi + � ik � · tp))2

n · Σn
i=1(aτi + � ik � · tp)2

(6)

Jτ−Pack > Jσ−Pack. (7)

Since the algorithms are running on the same set of transac-
tions, we have

Σn
i=1a

2
σi

= Σn
i=1a

2
τi

(8)

Σn
i=1

(
aσi

+

⌈
i

k

⌉
· tp

)
= Σn

i=1

(
aτi +

⌈
i

k

⌉
· tp

)
. (9)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

7642 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 11, NOVEMBER 2021

According to (5)–(7), (9), we have

Σn
i=1

(
aσi

+

⌈
i

k

⌉
· tp

)2

> n · Σn
i=1

(
aτi +

⌈
i

k

⌉
· tp

)2

.

(10)
Expand (10), we get

Σn
i=1a

2
σi

+Σn
i=1

(⌈
i

k

⌉
· tp

)2

+ 2Σn
i=1

(
aσi
·
⌈
i

k

⌉
· tp

)

> Σn
i=1a

2
τi
+Σn

i=1

(⌈
i

k

⌉
· tp

)2

+ 2Σn
i=1

(
aτi ·

⌈
i

k

⌉
· tp

)
.

(11)

According to (8), (11), we have

Σn
i=1

(
aσi
·
⌈
i

k

⌉)
> Σn

i=1

(
aτi ·

⌈
i

k

⌉)
. (12)

Adding (2) and all the inequations in (3), we have

Σ
�nk �−1
i=1 Σik

j=1aσj
> Σ

�nk �−1
i=1 Σik

j=1aτj . (13)

Adding the inequations in (12) and (13), we have
⌈n
k

⌉
Σn

i=1aσi
= Σ

�nk �−1
i=1 Σik

j=1aσj
+Σn

i=1

(
aσi
·
⌈
i

k

⌉)

> Σ
�nk �−1
i=1 Σik

j=1aτj +Σn
i=1

(
aτi ·

⌈
i

k

⌉)

=
⌈n
k

⌉
Σn

i=1aτi . (14)

It is clear that (14) is contradictory to (4). As a result, the
assumption does not hold and σ-PACK achieves larger fairness
than τ -PACK. �

According to Theorem 1, it achieves better fairness to pack
transactions with the larger sum of waiting times. Therefore, the
best strategy is to pack transactions with top-k waiting times,
which is FCFS. However, such a transaction subset can be
invalid and we need to continuously generate transaction subsets.
According to Theorem 1, the sum of waiting times can be treated
as the heuristic to generate transaction subsets. That is, we are
supposed to find the transaction subset with the first, second,
· · · , mth largest sum of waiting times.

Because the transaction waiting times are known real num-
bers, the problem is to find a subset of no more than k elements
from a set of n real numbers with the mth largest subset sum
among all the feasible subsets. Here, the feasibility means the
subsets contain no more than k elements. If k is smaller than n,
there are Σk

i=0

(
n
i

)
feasible subsets. Similarly, there are 2n ones

if k is no smaller than n. In this article, we consider the two
conditions separately with problem statements as follows.

Definition 6: Problem SM-Sum: Given a set of n positive real
numbersW , a positive integer k where k < n, and a positive in-
teger m where m ≤ Σk

i=0

(
n
i

)
, there are Σk

i=0

(
n
i

)
distinct subsets

ofW of size no larger than k. Among the subsets, find the one
with the mth largest sum.

Definition 7: Problem LM-Sum: Given a set ofn positive real
numbers W , a positive integer k where k ≥ n, and a positive
integer m where m ≤ 2n, there are 2n distinct subsets ofW of

Algorithm 1: FAIR-PACK: A Fairness-Based Transaction
Packing Algorithm for Problem ORI-FAIR.

Input: n: the memory pool size; X = {x1, . . . , xn}: the
transactions in memory pool; S = {s1, . . . , sn}: the
transaction submission times; k: the maximum number of
transactions in a block; tc: the current timestamp;
IS-VALID(U): a procedure to check the validity of
transaction subset U ; SUM-INDEX(W, n, k,m): a
procedure to solve SM-SUM; MIN-HEAP-OP(W, n, k,m):
a procedure to solve LM-SUM

Output: a valid transaction subset of X or NIL in case that
all subsets are invalid

1: W ← tc − S
2: Sort X with respect toW in non-increasing order
3: for m← 1 to∞ do
4: if k < n then id←Sum-Index(W, n, k,m).MAIN()
5: else id←Min-Heap-Op(W, n, k,m).MAIN()
6: end if
7: if id = NIL return NIL end if
8: U ← xid

9: if Is-Valid(U) return U end if
10: end for

size no larger than k. Among the subsets, find the one with the
mth largest sum.

If the problems SM-SUM and LM-SUM are solved, then the
problem ORI-FAIR can be solved by Algorithm 1.

In Algorithm 1, we assume that the problem SM-SUM and
LM-SUM are solved by SUM-INDEX and MIN-HEAP-OP, respec-
tively. First, we compute the transaction waiting times based
on the submission times and the current timestamp. Then, the
transactions are sorted according to the waiting times in a
nonincreasing order. That is, wi will be no smaller than wj if
i < j after sorting. In the for-loop, we transform the problem
of finding the transaction subset with the first, second, · · · , mth
largest sum of waiting times to SM-SUM or LM-SUM depending
on the relationship between k and n. Both the procedures of
SUM-INDEX and MIN-HEAP-OP will return the indexes of the
selected elements. Finally, we derive the transaction subset based
on the index set as the output of FAIR-PACK.

IV. SUM-INDEX: HEURISTIC SOLUTION TO SM-SUM

In this section, we focus on solving SM-SUM. In particular,
we propose to use directed acyclic graph (DAG) G to represent
all the Σk

i=0

(
n
i

)
subsets. In G, we prove a partial order among

the subsets with respect to the subset sum, which leads to the
heuristic to enumerate the subsets according to the index sum.
That is, the subset sum is related to the number of elements and
index sum. Such a heuristic is leveraged in algorithm SUM-INDEX

to solve SM-SUM. To begin with, we define the terminologies
of set sum and index sum as follows.

Definition 8: Given a set of n real numbers W , the set sum
of W is defined to be the sum of all the elements in W , i.e.,
E(W) = Σn

i=1wi.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FAIRNESS-BASED PACKING OF INDUSTRIAL IOT DATA IN PERMISSIONED BLOCKCHAINS 7643

Fig. 2. Subsets of size p listed level by level according to index sum.

Definition 9: Given a set of n positive real numbers
W = {w1, . . . , wn} and a subset I = {wσ1 , . . . , wσp

} of W ,
the index sum of I is defined to be the sum of the indexes of its
corresponding elements inW , i.e., D(I) = Σp

i=1σp.
There are Σk

i=0

(
n
i

)
nodes in G, in which each node represents

a subset. Moreover, G consists of k + 1 connected components,
in which the pth component is the collection of subsets of size
p− 1. The number of subsets of size i, i.e.,

(
n
p

)
, is exactly the

size of the pth component. Furthermore, the subset in the ith
component tends to have a smaller subset sum than the subset
in the jth component if i < j because of the essential difference
in subset sizes. This also indicates a partial order between the
components in terms of subset sum. Next, we introduce the
directed edges in each component.

In the pth component of G, all the subsets of size p are listed
level by level according to the index sum, as shown in Fig. 2. In
the figure, the “greater” operator between two subsets represents
the relationship of subset sum between them. We find that the
subset with a smaller index sum is likely to have a larger set
sum. In particular, given a subset I whose index sum is not the
smallest, there must be another subset I′ with smaller index sum
and larger subset sum, which is proved in Theorem 2. Moreover,
we add a directed edge from the node representing I′ to the node
representing I. In this way, all the nodes are (weakly) connected
in the pth components. Because the edges are always from the
upper level, i.e., smaller index sum, to the lower level, i.e., larger
index sum, the pth components is a directed and acyclic.

Theorem 2: Given a set of n positive real numbers
W = {w1, . . . , wn} where w1 ≥ · · · ≥ wn and a subset I of
W where |I| = p, D(I) = d, and d
= p(p+ 1)/2, there exists
at least one subset I′ ofW such that |I′| = p, D(I′) = d− 1,
and E(I′) ≥ E(I).

Proof: Let I = {wσ1 , . . . , wσp
} where Σp

i=1σp = d and
σ1 < · · · < σp. Assume, for the sake of contradiction, that for all
i, wσi−1 ∈ I if σi > 1 (C1). Assume, for the sake of contradic-
tion, thatσ1 > 1 (C2). We havewσ1−1 ∈ I according to assump-
tion C1. However, wσ1 is the largest element in I. Therefore,
C2 does not hold and σ1 = 1. Similarly, we can get σi = i for
every 1 ≤ i ≤ p. Therefore, d = Σp

i=1σi = p(p+ 1)/2, which
contradicts the condition that d
= p(p+ 1)/2. Hence, C1 does
not hold and there exists at least one i such that σi > 1 and
wσi−1 /∈ I.

Let σt > 1 and wσt−1 /∈ I. We construct I′ = I \ {wσt
} ∪

{wσt−1} satisfying the conditions in the theorem as follow.
1) I′ ⊂ W since I ⊂ W and {wσt−1} ∈ W .
2) |I′| = |I| − 1 + 1 = p.

Fig. 3. (a) H(4) and (b)WH(4).

3) D(I′) = D(I)− σt + (σt − 1) = d− 1.
4) E(I′) ≥ E(I) since E(I′)− E(I) = wσt−1 − wσt

≥0.
�

We apply the abovementioned construction to all the k + 1
components in G, resulting in G to be a DAG. The partial
orders among the subsets is reveal in G, which gives birth to
a heuristic algorithm SUM-INDEX to solving SM-SUM as shown
in Algorithm 2.

In SUM-INDEX, we do not order all the subsets to find the
subset with exactly the mth largest subset sum since the time
complexity, i.e., O(Σk

i=0

(
n
i

) · log(Σk
i=0

(
n
i

)
)), is too high. In-

stead, we enumerate the subset size in decreasing order, the
index sum of the subsets in increasing order, and the subset in
lexicographical order sequentially. The algorithm SUM-INDEX

begins with the first subset of size k and index sum k(k + 1)/2.
Such a subset contains exactly the k largest elements inW . To
find the next subset, procedure NEXT-SUBSET first tries to invoke
the procedure NEXT-PD to find a subset with the same subset size
and index sum. In detail, NEXT-PD takes a subset r as input and
outputs the next subset of r in lexicographical order. If such a
subset is not found, NEXT-SUBSET increases the desired index
sum and invokes procedure FIRST-PD to find the first subset in
lexicographical order. Finally, if the index sum exceeds the limit,
NEXT-SUBSET will increase the subset size and set the index sum
to the smallest one.

V. MIN-HEAP-OP: OPTIMAL SOLUTION TO LM-SUM

In this section, we propose algorithm MIN-HEAP-OP to solve
LM-SUM. We build a min-heap to maintain the relationship in
terms of subset sums among the 2n subsets, and the subsets are
generated by manipulating the min-heap.

To begin with, we construct a binary treeH(n) as follows:
1) H(n).root = {n};
2) for each element e ∈ H(n) in which min(e)
=1,

e.lc = e \ {min(e)} ∪ {min(e)− 1};
3) for each element e ∈ H(n) in which min(e)
=1,

e.rc = e ∪ {min(e)− 1}.
An example ofH(4) is shown in Fig. 3(a). We see thatH(4)

is a complete binary tree, which contains and only contains all

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

7644 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 11, NOVEMBER 2021

Algorithm 2: SUM-INDEX: A Heuristic Algorithm for
SM-SUM.

Input:W: a set of n positive real numbers; k: a positive
integer that k < n; m: a positive integer that m ≤ Σk

i=0

(
n
i

)
Output: the indexes of the subset ofW with approximately
the m-th largest subset sum among all the Σk

i=0

(
n
i

)
subsets

1: procedure Main
2: if m = 1 return First-Subset() end if
3: return Next-Subset()
4: end procedure
5: procedure First-Subset
6: global gp← k � “global” variable for all procedures
7: global gd← gp(gp+1)

2

8: return First-PD(gp, gd)
9: end procedure

10: procedure Next-Subset
11: return Next-PD(gp, gd) if not NIL

12: gd← gd+ 1
13: return First-PD(gp, gd) if not NIL

14: (gp, gd)← (gp− 1, gp(gp+1)
2)

15: if gp = 0 return NIL end if
16: return First-PD(gp, gd)
17: end procedure
18: procedure First-PDp, d

19: if d < (p+1)p
2 or d > (n−p+1+n)p

2 then return NIL

20: end if
21: r← an array of size p in which all elements are 0
22: for i← 1 to p do
23: ri ← max(ri−1 + 1, d− (n−p+i+1+n)(p−i)

2)

24: d← d− ri
25: end for
26: return r

27: end procedure
28: procedure Next-PDp, d, r

29: s← an array of size p in which all elements are 0
30: for i← 1 to p do si ← si−1 + ri end for
31: for i← p− 1 to 1 do
32: if ri + 1 < ri+1 and

d− si − 1 ≥ (ri+ri+p−i+3)(p−i)
2 and

d− si − 1 ≤ (n+i+1−p+n)(p−i)
2 then

33: (ri, d)← (ri + 1, d− si − 1)
34: for j ← i+ 1 to p do
35: rj ← max(rj−1 + 1, d− (n+j+1−p+n)(p−j)

2)

36: d← d− rj
37: end for
38: return r

39: end if
40: end for
41: return NIL

42: end procedure

the subsets of {1, 2, 3, 4}. Next, we prove it in case of n through
Theorem 3 and Theorem 4.

Theorem 3: The treeH(n) contains all the nonempty subsets
of U = {1, 2, . . . , n}.

Proof: Consider an arbitrary subset I of U . We prove the
lemma by induction on the minimum value of I .

Base case. When min{I} = n, we can infer that I = {n}
because I ⊆ U and max{U} = n. Therefore, I is an element,
in particular, the root ofH(n).

Induction step. Let 1 < k ≤ n and assume I is an element
of H(n) as long as min(I) ≥ k. We aim to prove that I is an
element ofH(n) as long as min(I) = k − 1. We consider three
circumstances as follows.

1) Case 1: |I| = 1. We can infer that I = {k − 1} as
min(I) = k − 1. Consider another subset I ′ = {k}.
Because I ′ ⊆ U and min(I ′) = k, we know I ′ is an
element of H(n). I ′.lc = I ′ \ {k} ∪ {k − 1} = I . As a
result, I is an element ofH(n) as well.

2) Case 2: |I|
=1 and min(I \ {k − 1}) = k. Consider
another subset I ′ = I \ {k − 1}. As I ′ ⊆ I ⊆ U and
min(I ′) = k, I ′ is an element of H(n). I ′.rc=I ′ ∪
{k−1}=I . Therefore, I is also an element ofH(n).

3) Case 3: |I|
=1 and min(I \ {k − 1})
= k. Consider an-
other subset I ′ = I \ {k − 1} ∪ {k}. Because I ⊆ U and
k ∈ U , we can infer that I ′ ⊆ U . Furthermore, I ′ is an
element ofH(n) as min(I ′) = k. I ′.lc=I ′ \ {k} ∪ {k −
1}=I . Hence, I is an element ofH(n) as well.

The abovementioned three cases cover all the subsets whose
minimum value equals k − 1. Meanwhile, we show the subsets
are elements of H(n) for all the three cases. Therefore, I is an
element ofH(n) as long as min(I) = k − 1.

Based on the base case and induction step, we conclude that
I ⊆ U is an element ofH(n) as long as min(I)≥1. �

Theorem 4: The tree H(n) is a complete binary tree,
which contains and only contains all the nonempty subsets of
U = {1, 2, . . . , n}.

Proof: Notate the set of elements at level k and its size as
H(n, k) and |H(n, k)|, respectively. In the following, we prove
that |H(n, k)| ≤ 2k−1 andmin(e) = n+ 1− k for any 1 ≤ k ≤
n− 1 and e ∈ H(n, k) by induction on the value of k.

Base case. When k = 1, there is only one element {n} in the
first level of the tree H(n), i.e., H(n, k) = {{n}}. We can get
thatH(n, k) = 1 ≤ 2k−1 and min({n}) = n = n+ 1− k.

Induction step. Let k be an integer that 1 ≤ k < n− 1 and
assume that |H(n, k)| ≤ 2k−1 and min(e) = n+ 1− k for any
e ∈ H(n, k). We aim to prove that |H(n, k + 1)| ≤ 2k and
min(e) = n− k for any e ∈ H(n, k + 1). We prove the two
statements separately as follows.

1) There are exactly two children for each element in
H(n, k) according to the definition of the tree H(n).
If there is no overlapping element among all the
children of all the elements inH(n, k), |H(n, k + 1)|will
be exactly twice the value of |H(n, k)|, i.e., |H(n, k +
1)| = 2 · |H(n, k)| ≤ 2 · 2k−1 = 2k. If any overlapping
element, the value of |H(n, k + 1)| will be smaller, i.e.,
|H(n, k + 1)| ≤ 2k. As a result, |H(n, k + 1)| ≤ 2k.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FAIRNESS-BASED PACKING OF INDUSTRIAL IOT DATA IN PERMISSIONED BLOCKCHAINS 7645

2) Considering an arbitrary element e ∈ H(n, k + 1), e
must be a child of some element e′ ∈ H(n, k). We
can get min(e′) = n+ 1− k according to the assump-
tion. If e′.lc = e, then min(e) = min(e′ \ {min(e′)} ∪
{min(e′)− 1}) = n− k. Otherwise, e′.rc = e. Un-
der this circumstance, min(e) = min(e′ ∪ {min(e′)−
1}) = n− k. As a result, min(e) = n− k for any e ∈
H(n, k + 1).

Based on the base case and the induction step, we draw
the conclusion that |H(n, k)| ≤ 2k−1 and min(e) = n+ 1− k
for any 1 ≤ k ≤ n− 1 and any e ∈ H(n, k). Consider k = n,
we can infer that min(e) = 1 for any e ∈ H(n, n). Therefore,
all the elements in H(n, n) have no child, i.e., H(n) con-
sists of exactly n levels. Therefore, |H(n)| = Σn

i=1|H(n, i)| ≤
Σn

i=12i−1 = 2n − 1. In another word, the size of the tree H(n)
is no more than 2n − 1.

The number of nonempty subsets of U is 2n − 1. According
to Lemma 3, the size ofH(n) is no less than 2n − 1, which is the
number of nonempty subsets ofU . Therefore, the size ofH(n) is
exactly 2n − 1. Meanwhile,H(n) contains and only contains all
the nonempty subsets of U . Moreover,H(n) consists of exactly
n levels. As a result,H(n) is a complete binary tree. �

Based on the binary treeH(n), we construct a minimum heap
WH(n) as follows:

1) WH(n).root.value = H(n).root;
2) for each element e ∈ WH(n) in which e.value.lc
= NIL,

e.lc.value = e.value.lc;
3) for each element e ∈ WH(n) in which e.value.rc
= NIL,

e.rc.value = e.value.rc;
4) for each element e ∈ WH(n), e.key = E(We.value).

Each element in H(n) represents the indexes of a selected
subset ofW . For example, Fig. 3(b) shows the subsets generated
according to H(n) when n = 4. In Fig. 3(b), we can see the
subset sum of a parent node is always no less than the one
of a child node, which implies H(4) to be a min-heap. In the
following, we formally prove thatH(n) is a min-heap based on
the subset sum, as shown in Theorem 5.

Theorem 5: WH(n) is a binary min-heap.
Proof: On one hand, WH(n) is a complete binary tree since

the value field in WH(n) is exactly the same with H(n) while
H(n) is a complete binary tree as proven in Theorem 4. On
the other hand,WH(n) satisfies the min-heap property, which is
demonstrated as follows.

1) For each e inWH(n) with left child, i.e., e.lc
= NIL, the
key of e.lc must be no smaller than the key of e

e.lc.key = E(We.lc.value) = E(We.value.lc)

= E(We.value\{min(e.value)}∪{min(e.value)−1})

= E(We.value)− wmin(e.value) + wmin(e.value)−1

= e.key− (wmin(e.value) − wmin(e.value)−1)

≥ e.key.

2) For each e inWH(n) with right child, i.e., e.rc
= NIL, the
key of e.rc must be no smaller than the key of e

Algorithm 3: MIN-HEAP-OP: A Min-Heap-Based Algo-
rithm to Solve LM-SUM.

Input:W: a set of n positive real numbers; k: a positive
integer that k > n; m: a positive integer that m≤2n

Output: the indexes of the subset ofW with the m-th
largest subset sum among all the 2n possible subsets

1: procedure Main
2: if m = 1 return First-Subset() end if
3: return Next-Subset()
4: end procedure
5: procedure First-Subset
6: globalWH(n) ← a min-heap built as stated
7: return {1, 2, . . . , n}
8: end procedure
9: procedure Next-Subset

10: r← Delete-Min(WH(n))
11: if r
= ∅ then return {1, 2, . . . , n} \ r.value end if
12: return NIL

13: end procedure

e.rc.key = E(We.value.rc)

= E(We.value∪{min(e.value)−1})

= E(We.value) + wmin(e.value)−1

= e.key + wmin(e.value)−1

≥ e.key.

To summarize,WH(n) is a binary min-heap as it is a complete
binary tree and satisfies the min-heap property. �

Note that min-heap is an efficient data structure to find the kth
minimum element. We leverage the min-heap property to solve
the problem LM-SUM, as shown in Algorithm 3.

In Algorithm 3, we build a min-heap WH(n) to represent
all the subsets of W . In case that m equals 1, Algorithm 3
directly returns the whole set W because W owns the largest
subset sum essentially. Otherwise, we applies the DELETE-MIN

operation toWH(n) to get its root r. The key of r is the smallest
subset sum according to the min-heap property. Therefore, we
exclude the elements in r.value from the whole set and get the
transaction indexes to be selected. DELETE-MIN will also deletes
the minimum element, i.e., the root, from the min-heap and
maintains the min-heap property. In this way, different subsets
can be generated continuously.

VI. TIME COMPLEXITY ANALYSIS

In this section, we analyze the time complexity of the algo-
rithms SUM-INDEX, MIN-HEAP-OP, and FAIR-PACK.

Theorem 6: The time complexity of SUM-INDEX is O(n).
Proof: As shown in Algorithm 2, the main procedure of SUM-

INDEX finally calls the procedure FIRST-PD on line 13 or 16, or
the procedure NEXT-PD on line 11. Note that the time complexity
of SUM-INDEX is irrelevant to the value of m since m is only an
indicator for whether the first subset is to be generated.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

7646 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 11, NOVEMBER 2021

In terms of FIRST-PD, it contains a for-loop from 1 to p.
Because p, as the number of elements in the subset, is of O(n)
size, FIRST-PD takes O(n) time.

There are three for-loops in procedure NEXT-PD on line 30,
31, and 34. The first for-loop on line 30 takes O(n) time. The
third for-loop on line 34 is inside the second for-loop on line
31 but will be invoked no more than once because there is a
RETURN statement right after it. As a result, the second and third
for-loops takes O(n) time in total. Overall speaking, NEXT-PD
takes O(n) time.

Finally, we conclude that the time complexity of the algorithm
SUM-INDEX is O(n). �

Theorem 7: The time complexity of MIN-HEAP-OP is O(n).
Proof: The major time overhead of MIN-HEAP-OP lies in the

construction of the min-heapWH(n) on line 6 and the operation
DELETE-MIN on line 10. In the construction ofWH(n), we only
generate its root and store how the other elements are generated
instead of generating all the elements in memory. As a result,
it only takes O(1) for the min-heap construction. In terms of
DELETE-MIN, the time complexity should be logarithmic to the
size of the heap. As a result, each DELETE-MIN takes O(n)
because the size of WH(n) is 2n − 1. Note that there are also
O(n) key comparisons between any two elements of WH(n),
in which the subset sums are to be calculated. However, the
calculation of subset sum of a child node can be derived from
the subset sum of its parent because the difference between
them is only one or two elements. To this end, The subset
sums of the O(n) subsets can be calculated in O(n) time. In
conclusion, the time complexity of the algorithm MIN-HEAP-OP

is O(n). �
Finally, it comes to the time complexity of the algorithm FAIR-

PACK. As shown in Algorithm 1, FAIR-PACK iterates the variable
m from 1 to infinity until a valid subset (block) is found. Hence,
the running time of FAIR-PACK heavily depends on the block
validity ratio defined as follows.

Definition 10: Block Validity Ratio: the possibility for a block
to be valid (%).

Theorem 8: Supposing the block validity ratio to be α,
the algorithm FAIR-PACK terminates in log(1−β)

log(1−α) ·O(n) with a
possibility no less than β.

Proof: The possibility that FAIR-PACK terminates in k rounds
is 1− (1− α)k, in which each round is a call of SUM-INDEX

or MIN-HEAP-OP. Hence, we have (1− (1− α)k) ≥ β, which
leads to k ≥ log(1−β)

log(1−α) . Each round of FAIR-PACK takes O(n)
time according to Theorem 6 and Theorem 7. Finally, FAIR-
PACK terminates in log(1−β)

log(1−α) ·O(n) with a possibility no less
than β. �

For example, if the block validity ratio is 0.5%, FAIR-PACK

will terminate in around 460 ·O(n), 597 ·O(n), and 919 ·O(n)
with possibilities of 90%, 95%, and 99%, respectively.

VII. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of FAIR-PACK.

Fig. 4. Protocol buffers of the blockchain prototype.

First, we developed a proof-of-concept blockchain prototype
using around 1070-line python code based on gRPC. Fig. 4
shows the communication interfaces among blockchain nodes.
In the prototype, two services are implemented to support the
blockchain runtime, i.e., peer discovery (“Discovery”) and data
synchronization (“Synchronization”). The “Discovery” service
is used for discovering the nodes inside the blockchain network.
When a node is started, it will greet several static nodes (the
same as bootnodes in Ethereum) and exchange the connec-
tivity information. The block and transaction synchronization
is achieved by the “Synchronization” service, which consists
of five remote procedure calls. One thing in particular is that
proof of work (PoW) serves as the consensus protocol of the
blockchain prototype.

Furthermore, three transaction packing algorithms, i.e., FAIR-
PACK, FAIR-FIRST [16], and RANDOM-PACK are implemented
with around 510-line C++ code. The three packing algo-
rithms are integrated into the blockchain prototype with the
help of ctypes, using which the packing algorithms are com-
piled as dynamic link libraries and can be called in python
programs.

Finally, we deploy the blockchain prototype together with the
three packing algorithms on Amazon Web Services with up to
60 Elastic Compute Cloud (EC2) instances. The 60 C4.LARGE

EC2 instances constitute 120 nodes, in which each instance with
2 vCPUs and 3.75 GB RAM is shared by two nodes.

The Bitcoin data in year 2012, whose size is around 804
megabytes containing around 1.9 million transactions, is used
as the input for the permissioned blockchain.

The performance metrics are the fairness and average re-
sponse time as discussed in problem definition. The perfor-
mances of the packing algorithms can be affected by the trans-
action incoming rate, block generation time, block size, and
block validity ratio. We study how the three factors influence
the performance of the three packing algorithms. In particular,
transaction incoming rate, block size, and block validity ratio are
tuned by direct parameter setting, while block generation time
is tuned by varying the PoW difficulty. The experiment runs for
5 min and 100 times for each parameter setting, e.g., transaction
incoming rate as 600tx/s, blockchain generation time as 5.0 s,
block size as 3000tx/bk, and block validity ratio to be 0.5%.
Fig. 5 presents the results.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FAIRNESS-BASED PACKING OF INDUSTRIAL IOT DATA IN PERMISSIONED BLOCKCHAINS 7647

Fig. 5. Experimental result.

A. Influence of Transaction Incoming Rate

As the transaction incoming rate increases, there will be more
transactions in memory pool when generating a block. More-
over, the backlog of memory pool will increase if transaction
incoming rate is larger than transaction processing speed. We
study the influence of the transaction incoming rate with results
shown in Fig. 5(a) and (b). Particularly, we vary the transaction
incoming rate from 100 to 1000tx/s with a step of 50tx/s and
fix the block generation time, block size, and block validity ratio
to be 5.0 s, 3000tx/bk, and 0.5%, respectively.

The transaction incoming rate, if less than 600tx/s, will be
less than or equal to the transaction processing speed, which is
calculated to be 3000tx/bk

5.0 s/bk = 600tx/s. On this circumstance, the
average response time only slightly increases as the transaction
incoming rate increases for all the three transaction packing
algorithms. This is because there is nearly no backlog of the
memory pool. In terms of fairness, all the three algorithms
perform better with the increase of the transaction incoming rate.
The reason behind it is that the increasing number of transactions
decreases response time differences among the transactions.

When the transaction incoming rate is over 600tx/s, the
backlog of the memory pool will increase as time passes because
the transaction processing speed is less than the transaction
incoming rate. In this case, more and more transactions remain
unpacked in the memory pool, which increases the average
response time regardless of the packing algorithms. However,
the fairness only fluctuates and even increases. This is because
all the transactions in the blockchain incur long response times
and the deviation among the response times of the transactions
will be smaller.

Overall speaking, all three transaction packing algorithms
are influenced by the transaction incoming rate. With different
transaction incoming rates, the response time using FAIR-PACK

is slightly better than one using the other two algorithms.

Moreover, FAIR-PACK can achieve fairness of 0.70 when the
transaction incoming rate is no more than 1000tx/s while the
fairness using FAIR-FIRST and RANDOM are unsatisfactory, i.e.,
up to 0.54 and 0.52, respectively.

B. Influence of Block Generation Time

In this section, we study how the performances of the three
algorithms are affected by the block generation time. The re-
sults in terms of the average transaction response time and the
fairness are shown in Fig. 5(c) and (d), respectively. We vary
the block generation time from 1.0 to 10.0 s with a step of 0.5 s.
Nonetheless, the transaction incoming rate, the block size, and
the block validity ratio are fixed to be 600tx/s, 3000tx/bk, and
0.5%, respectively.

The average response time increases with the increase of
the block generation time whatever the transaction packing
algorithm is. A short block generation time decreases the waiting
times of the transactions and increases the possibility for the
transactions to be packed. Moreover, Fig. 1(c) indicates that the
average response time increases remarkably when the block gen-
eration time is over 5.0 s, which is the time when the transaction
incoming rate is higher than the transaction processing speed. On
such circumstances, transactions will be stacked in the memory
pool and remain unpacked for a long time. In general, the three
algorithms achieve similar average response time regardless of
the block generation time.

In terms of fairness, our algorithm outperforms the other two
algorithms remarkably when the block generation time is no
more than 5.0 s. The number of transactions in the memory pool
will be smaller than the block size when the block generation
time is less than 5.0 s. In this case, our algorithm FAIR-PACK

will employ MIN-HEAP-OP as the underlying transaction selec-
tion algorithm, which achieves larger fairness. When the block
generation time is over 5.0 s, FAIR-PACK still outperforms two

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

7648 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 11, NOVEMBER 2021

other algorithms although with degraded advantages. The reason
is that the heuristic algorithm SUM-INDEX is employed for most
of the time on this circumstance.

C. Influence of Block Size

Block size is another significant factor influencing the per-
formance of the transaction packing algorithms. In the setting,
we vary the block size from 500 to 5000tx/bk with a step of
250tx/bk and set the transaction incoming rate, block generation
time, and block validity ratio to be 600tx/s, 5.0 s, and 0.5%,
respectively. The results of average response time and fairness
are shown in Fig. 5(e) and (f), respectively.

At first glance, Fig. 5(e) and (f) are nearly symmetric with
Fig. 5(c) and (d), respectively. Indeed, the influence of large
block size is similar to the effect of a short block generation
time. The distinct difference lies in the scale of the y-axis. For
example, the average response time can be as least as 1.5 s when
the block generation time is 1 s. However, the best average
response time is up to 9 s when the block size is 5000tx/bk.
The reason is that the average response time depends much
on the block generation time, which is fixed to be 6 s in this
section.

In Fig. 5(f), the fairness among transactions using FAIR-FIRST

and RANDOM can be as least as 0.58 and 0.55 when the block
size is 5000tx/bk. This is because the deviation of waiting times
of the transactions can be vast with large block size. However,
our algorithm FAIR-PACK remains effective on this circum-
stance, which results from the theoretically optimal algorithm
MIN-HEAP-OP.

D. Influence of Block Validity Ratio

Finally, we study the influence of the block validity ratio. In
terms of block validity ratio, it naturally comes to our minds
that a low block validity ratio can lead to the invalidity of all the
blocks containing transactions with large waiting times. Then,
a small number of transactions with long waiting times result
in long response times of a small set of transactions, substantial
deviation of the response times in terms of the full transaction
set, and finally poor fairness.

To verify the idea, we conduct experiments in which the trans-
action incoming rate, the block generation time, and the block
size are fixed to be 600tx/s, 5.0 s, and 3000tx/bk, respectively
and the block validity ratio varies from 0.1 to 1.0% with a step of
0.05%. However, neither the fairness nor the average response
time is distinctly affected by the block validity ratio, as shown
in Fig. 5. The reason is that the validity of a block is random and
cannot be set deliberately. As a result, we can pack a transaction
with long waiting time as long as a block containing it is valid.

In terms of fairness, FAIR-PACK, FAIR-FIRST, and RANDOM

achieves fairness of 0.765, 0.720, and 0.701, respectively. Note
that, an improvement to 0.765 from 0.701 or 0.720 is significant
since the value of fairness only varies from 0 (exclusive) to
1 (inclusive), and a fairness of 0.700 is trivial to achieve by
random packing. The average response times using FAIR-PACK,
FAIR-FIRST, and RANDOM are around 18.00, 19.75, and 20.65 s,
respectively. That is, FAIR-PACK reduces the average response

time of FAIR-FIRST and RANDOM by 8.9% and 12.8%, respec-
tively.

VIII. RELATED WORK

The existing works related to blockchain fairness can be
classified into three categories, i.e., fairness among service
providers, between service providers and requesters, and among
service requesters.

In terms of fairness among service providers, a service
provider contributing a certain proportion of resources is sup-
posed to gain the same portion of rewards in fair blockchains.
The research communities have studied such fairness in permis-
sionless blockchains, in which the resource is computational
resource and the rewards refer to monetary rewards. It is shown
that the Bitcoin mining protocol is not incentive compatible
and an attack can make the miners’ revenue larger than their
fair share [17]. Eyal et al. [15] only considered the rewards of
the miner contributing the largest computational resource and
propose Bitcoin-NG, which improves such fairness. Pass and
Shi [18] considered approximate fairness among all the miners
and propose FruitChains with theoretical analysis.

A service provider is supposed to receive some rewards if the
service requester enjoys its service, which is fairness between
the service providers and requesters. In traditional systems, the
rewards are transferred with the help of a trustworthy third party.
The smart contract in blockchains provides great potential to
enhance such fairness since it removes the third party and the
transactions are automatically executed. Kosba et al. [19] solved
the problem that malicious contractual parties may prematurely
abort from a protocol to avoid financial payment. Liu et al. [20]
explored the solution space for enabling the fair exchange of
a cryptocurrency payment for a receipt. The fairness between
cloud service providers and requesters are investigated in [21]
and [22].

The fairness among the service requesters is insufficiently ex-
plored in blockchain. In permissionless blockchains, the service
requesters are supposed to pay transaction fees in order to make
their transactions confirmed [23]. As a result, the transactions
with high transaction fees are more likely to be confirmed
earlier, which achieves general fairness although not quantified.
There is no native cryptocurrency to be paid as transaction
fee in permissioned blockchains. Hence, fairness is not defined
or investigated. In [16], the fairness problem in permissioned
blockchains was first studied and FAIR-FIRST was proposed.
However, it lacks theoretical analysis, and the performance is
not satisfactory.

IX. CONCLUSION

This article presented FAIR-PACK, the first fairness-based
transaction packing algorithm for permissioned blockchain em-
powered IIoT systems. In particular, we formally defined the
fairness problem and transform it into the problem of subset
sum through a proof of the correlation between the fairness
and the subset sum of the transaction waiting times. Then, a
heuristic algorithm and a min-heap-based optimal algorithm
were proposed to solve the subset sum problem for different

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: FAIRNESS-BASED PACKING OF INDUSTRIAL IOT DATA IN PERMISSIONED BLOCKCHAINS 7649

parameter settings. The proof and the two algorithms contribute
to FAIR-PACK, a fairness-based transaction packing algorithm for
permissioned blockchain empowered IIoT systems. Extensive
experimental results were articulated the advantages of FAIR-
PACK over prior packing algorithms in terms of both fairness
and average response time.

REFERENCES

[1] H. Subramanian, “Decentralized blockchain-based electronic market-
places,” Commun. ACM, vol. 61, pp. 78–84, 2018.

[2] C. Chen, T. Xiao, T. Qiu, N. Lv, and Q. Pei, “Smart-contract-based
economical platooning in blockchain-enabled urban Internet of Vehicles,”
IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4122–4133, Jun. 2020.

[3] Y. Wang, Z. Su, and N. Zhang, “Bsis: Blockchain-based secure incentive
scheme for energy delivery in vehicular energy network,” IEEE Trans. Ind.
Informat., vol. 15, no. 6, pp. 3620–3631, Jun. 2019.

[4] S. Zou, J. Xi, H. Wang, and G. Xu, “Crowdblps: A blockchain-based
location-privacy-preserving mobile crowdsensing system,” IEEE Trans.
Ind. Informat., vol. 16, no. 6, pp. 4206–4218, Jun. 2020.

[5] J. Xu, S. Wang, B. K. Bhargava, and F. Yang, “A blockchain-enabled
trustless crowd-intelligence ecosystem on mobile edge computing,” IEEE
Trans. Ind. Informat., vol. 15, no. 6, pp. 3538–3547, Jun. 2019.

[6] M. Herlihy, “Blockchains from a distributed computing perspective,”
Commun. ACM, vol. 62, pp. 78–85, 2019.

[7] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proc. 26th Symp.
Oper. Syst. Princ., 2017, pp. 51–68.

[8] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable byzantine consensus
via hardware-assisted secret sharing,” IEEE Trans. Comput., vol. 68, no. 1,
pp. 139–151, Jan. 2019.

[9] L. Xu, W. Yin, X. Zhang, and Y. Yang, “Fairness-aware throughput max-
imization over cognitive heterogeneous NOMA networks for industrial
cognitive IoT,” IEEE Trans. Commun., vol. 68, no. 8, pp. 4723–4733,
Aug. 2020.

[10] M. Li, D. Hu, C. Lal, M. Conti, and Z. Zhang, “Blockchain-enabled secure
energy trading with verifiable fairness in industrial Internet of Things,”
IEEE Trans. Ind. Informat., vol. 16, no. 10, pp. 6564–6574, Oct. 2020.

[11] J. Leng et al., “Manuchain: Combining permissioned blockchain with a
holistic optimization model as bi-level intelligence for smart manufactur-
ing,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 1, pp. 182–192,
Jan. 2020.

[12] U. Schwiegelshohn and R. Yahyapour, “Analysis of first-come-first-serve
parallel job scheduling,” in Proc. ACM SODA, 1998, pp. 629–638.

[13] R. Jain, D.-M. Chiu, and W. R. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer system,”
Eastern Res. Lab, Triangle Park, CA, USA, Tech. Rep. DEC Res. Rep.
TR-301, 1984.

[14] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Proc. Annu. Int.
Cryptol. Conf., 2017, pp. 357–388.

[15] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A
scalable blockchain protocol,” in Proc. USENIX NSDI, 2016, pp. 45–59.

[16] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, and J. He, “ Blochie: A blockchain-
based platform for healthcare information exchange,” in IEEE Int. Conf.
Smart Comput., 2018, pp. 49–56.

[17] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Commun. ACM, vol. 61, pp. 95–102, 2018.

[18] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proc. ACM PODC,
2017, pp. 315–324.

[19] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. IEEE Symp. Secur. Privacy, 2016, pp. 839–858.

[20] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Toward fairness of cryp-
tocurrency payments,” IEEE Secur. Privacy, vol. 16, no. 3, pp. 81–89,
May/Jun. 2018.

[21] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable and fair
realization,” in Proc. IEEE INFOCOM Conf. Comput. Commun., 2018,
pp. 792–800.

[22] Y. Zhang, R. Deng, X. Liu, and D. Zheng, “Outsourcing service fair pay-
ment based on blockchain and its applications in cloud computing,” IEEE
Trans. Serv. Comput., to be published, doi: 10.1109/TSC.2018.2864191.

[23] Ö Gü rcan, A. Del Pozzo, and S. Tucci-Piergiovanni, On the Bitcoin
Limitations to Deliver Fairness to Users. New York, NY, USA: Springer,
2017, pp. 589–606.

Shan Jiang received the B.Sc. degree in com-
puter science and technology from Sun Yat-sen
University, Guangzhou, China, in 2015. He is
currently working toward the Ph.D. degree in
computer science with the Department of Com-
puting, The Hong Kong Polytechnic University,
Hong Kong.

He was a Research Assistant with The Hong
Kong Polytechnic University from April 2015 to
June 2016 and a Visiting Student with Imperial
College London from November 2018 to March

2019. His research interests include distributed systems, blockchain,
and multirobot systems.

Jiannong Cao (Fellow, IEEE) received the
B.Sc. degree in computer science from Nan-
jing University, Nanjing, China, in 1982 and the
M.Sc. and Ph.D. degrees in computer science
from Washington State University, WA, USA, in
1986 and 1990, respectively.

He is currently the Otto Poon Charitable
Foundation Professor in Data Science and the
Chair Professor of Distributed and Mobile Com-
puting with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong.

He is also the Director of the Internet and Mobile Computing Lab in
the department and the Associate Director of University’s Research
Facility in Big Data Analytics. His research interests include parallel and
distributed computing, wireless networking and mobile computing, big
data and machine learning, and cloud and edge computing.

Hanqing Wu received the B.Sc. degree in soft-
ware engineering from Tongji University, Shang-
hai, China, in 2010. He is currently working to-
ward the Ph.D. degree in computer science with
the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong.

His research interests include distributed
computing, blockchain, and big data.

Yanni Yang received the B.E. and M.Sc. de-
grees from the Ocean University of China, Qing-
dao, China, in 2014 and 2017, respectively. She
is currently working toward the Ph.D. degree
with the Department of Computing, Hong Kong
Polytechnic University, Hong Kong, all in com-
puter science.

She was a Visiting Student with Media Lab,
MIT in 2019. She has authored and coauthored
paper in many conferences and journals, e.g.,
Ubicomp, SECON, IEEE INTERNET OF THINGS

JOURNAL. Her research interests include wireless human sensing, per-
vasive and mobile computing, and Internet of Things.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:55 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TSC.2018.2864191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

