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Abstract—Recently, much attention is paid to multi-robot
systems due to their widespread applications such as warehouse
robotics, persistent surveillance, and exploration of unknown
environments. Although urgently required by the applications,
coordination among multiple robots remains to be challenging.
Among the problems of multi-robot coordination, pattern for-
mation serves a fundamental one. It aims to control a group
of robots to form a desired shape with some certain goals such
as best formation quality, minimum makespan or minimum total
distance. Existing works mainly focus on the formation of certain
patterns, such as repeating squares or a circle. those approaches
cannot be generalized to arbitrary pattern formation. In this
paper, we propose a decentralized algorithm for a multi-robot
system to generate a given formation with an arbitrary repeating
pattern. We introduce basic pattern graph and assembling graph to
define a repeating pattern and formation quality for measurement.
Towards solving the repeating pattern formation problem, our
approach is divided into two phases. The robots are grouped into
multiple basic patterns in the first phase, and the patterns are
assembled level by level in the second phase. Simulations and real-
world experiments indicate the effectiveness and practicability of
our approach.

Index Terms—multi-robot system, pattern formation, dis-
tributed algorithm

I. INTRODUCTION

Recent advances in robotics have enabled the coordina-

tion of a vast number of capacity-limited robots to perform

complex tasks such as search, patrol, and escort. A system

containing large numbers of simple physical robots is called a

multi-robot system (MRS) [1]. MRS has been attracting more

and more attentions because of its great potential to carry more

complex tasks with lower cost than a single robot.

Informally speaking, a pattern is an overall appearance of

a system. For instance, a group of students is aligning into

a line, a troop of soldiers is assembled into a square, and a

flock of gooses is flying in a “V” shape. Here, the “line”,

“square”, and “V” are so-called patterns. As for a system,

forming a pattern has several advantages such as enhancing

the coordination efficiency and reducing the external impacts.

Thus, pattern formation, which aims to arrange a group of

robots into structured positions relative to each other, is an

important and fundamental problem of MRS [2].

Pattern formation has been a hot research topic in the

field of MRS for a long time [3]. However, existing works

are dedicated to some specific patterns, e.g., circle [4], or

repeating square. Those approaches are hard to be generalized

for arbitrary repeating patterns. Also, few of them are deployed

in real-world testbed. Thus, the practicability and effectiveness

can not be guaranteed.

To solve pattern formation problem in centralized MRS is

relatively easy. In a centralized MRS, there exists a central

computing station in the system. The central station can be

a powerful workstation or a specific robot in the MRS. The

station gathers the information from, compute the actions for,

and deliver the commands to all the robots. In this case, the

problem of pattern formation can be abstracted as a matching

and optimally solved in polynomial time [5].

When it comes to distributed MRS, the pattern formation

problem becomes very challenging. In a distributed MRS,

there is no central computing station, and the robots have to

make decisions by themselves. Therefore, coordination and co-

operation between multiple robots are required, which serves

as the key issue. Compared to centralized MRSs, distributed

MRSs are more flexible and robust. Thus, to solve pattern

formation problem in distributed MRS is significant and the

researchers have been paying many efforts. However, existing

works mainly focus on the formation of certain patterns, such

as repeating squares or a circle. Those approaches can hardly

be generalized to an arbitrary pattern specified by the users.

(a) A square formation with

repeating hexagon patterns

(c) A rhombus formation with

repeating hexagon patterns

(d) A trapezoid formation with

repeating heptagon patterns

(b) A triangle formation with

repeating quadrangle patterns

Fig. 1: Four Examples of repeating patterns
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(a) A square formation of repeat-
ing dots

(b) A triangle formation of re-
peating segments

(c) A rhombus formation of re-
peating triangles

Fig. 2: Real-world experiments

In this paper, we tackle the problem of arbitrary repeating

pattern formation in distributed MRSs. Firstly, we introduce

two concepts basic pattern graph and assembling graph to

facilitate defining a repeating pattern. For example, the four

repeating patterns in Fig. 1 are defined by basic patterns graphs

in Fig. 3 and assembling graphs in Fig. 4. Secondly, we

introduce the concept formation quality to evaluate how good

an MRS forms a repeating pattern. We use the concept of

formation quality to formulate the repeating pattern formation
problem. Thirdly, we propose a decentralized algorithm to-

wards solving the problem. Our algorithm runs in two phases.

In the first phase, the robots forms dispersed basic patterns

according to the input of basic pattern graph. In the second

phase, the dispersed basic patterns are assembled level by

level according to the input of assembling graph. Finally, we

conduct simulations in randomly generated MRSs and deploy

our algorithm in a real-world testbed. As shown in Fig. 2,

three repeating patterns are successfully formed by 10 robots.

The main contributions of the paper are:

• We formally define the problem of repeating pattern

formation in MRS. The problem formulation includes

two important concepts, i.e., basic pattern graph and

assembling graph, and a critical metric, i.e., formation

quality. To the best of our knowledge, we are the first

to define the problem and the performance evaluation

criteria formally.

• We propose a decentralized algorithm for repeating pat-

tern formation. The simulation results show that our

approach outperforms existing ones significantly.

• We deploy our algorithm in a real-world testbed. The

successful deployment demonstrates the practicability of

our algorithm. To the best of our knowledge, real-world

experiments are not included in most existing works.

II. RELATED WORK

Pattern formation is a typical coordination problem in MRS.

Traditional algorithms can be divided into three categories:

behavior-based algorithms [6], leader-follower algorithms [7]

[8], and virtual structure algorithms [9] [10].
In behavior-based algorithms, simple behaviors are designed

for each robot, such as collision avoidance, trajectory tracking,

obstacle avoidance, goal seeking and formation keeping. The

robots can perform more complex behaviors by interacting

with other robots. Behavior-based algorithms are often used by

combining with the potential field algorithms [11], which con-

trol the movement of the robots through gradients of potential

fields. The gradients are defined as the sum of attractive virtual

forces and repulsive forces in the potential fields overlaid

over the working area. Behavior-based algorithms are easy to

deploy and implement. However, they are hard to converge and

terminate within a short time, which would cause excessive

energy consumption due to continuous robotic movements.
Leader-follower algorithms select one or several robots as

leaders and take the others as followers. The leaders compute

their final positions in the formation and deciding geometric

relationship with the followers. The followers just follow the

movement of the leaders and maintain their relationship. This

kind of algorithms is also easy to implement. However, they

are easy to be affected by the failure of the leaders and lacks

of feedbacks among the leaders and the followers.
Virtual structure algorithms organize all the robots into a

rigid formation. Expected dynamics of the virtual structure are

defined firstly, and then related control laws for the movement

of the structure are translated into desired motion of each

robot. Coordination of the robots is easy to be implemented

by the algorithms, and the generated formation is easy to be

maintained. However, applications of the algorithms are lim-

ited since the generated formation is hard to be reconfigured.
Above traditional algorithms mainly focus on generating

simple formations with single patterns in small-scale MRS.

They are not suitable for complex formations with repeating

patterns in large-scale MRS. In recent years, some works were

conducted to solve the repeating pattern formation problem in

large-scale MRS. In particular, they map the problem as a

distributed task assignment problem by considering different

optimization objectives such as minimum total movement

distance, or minimum task deadline miss rate, etc. Then, some

auction and consensus based approaches [12] [13] are designed

to solve the problem.
However, these works require that the whole information

of the formation and the costs (e.g., time duration or energy

consumption) that each robot reaches its target position are

known by each robot beforehand, which is impractical. That

is because each robot just has limited storage space and it

cannot conserve all the position information of the formation.

Moreover, due to the uncertainty of the working area, it is hard

for each robot to estimate or predict the costs of its movement.
Recently, some works were proposed to conquer the above

drawbacks. Shakeel Ahmad et al. [14] proposed a decentral-

ized solution by using a task division method. The global goal
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of forming the desired formation is achieved by dividing it

into multiple small tasks of forming local patterns. Firstly,

a centralized neighbor selection method is used to construct

the local patterns. Secondly, a distributed singularity-robust

task-priority inverse kinematics method is proposed to control

the robots to move and be located at expected positions in

the patterns. Since a robot may be located at an overlapping

point of several patterns, it would receive multiple moving

orders from different neighbors in various patterns. Then, a

distributed null space behavioral (NSB) approach is proposed

to select appropriate movement based on priorities of the

moving orders. This solution has high reliability and low

memory requirement, but it is designed for specific formations

with losing the generality.

Yang Song et al. [15] [16] proposed a fully distributed

algorithm to generate a formation with the arbitrary repeat-

ing pattern. A kind of multigraph, called lattice graph, is

introduced to represent the pattern. The algorithm contains

2 phases. Firstly, all the robots form a tree. Secondly, the root

of the tree arranges its children to form a pattern according

to the lattice graph; Then, all the component robots in the

pattern continue to arrange their children in the tree to form

new patterns according to the lattice graph. Above operations

continue until all the robots in the system are arranged.

The algorithm is general and has low memory requirement.

However, it cannot guarantee the shape of the generated

formation, i.e., the generated formation may not be the desired

formation. That is because it just considers the generation of

patterns and does not consider how the patterns are connected

to achieve the desired formation.

III. PRELIMINARIES

In this section, we present the system model in Sec. III-A,

and formally define the repeating pattern formation problem

in Sec. III-B.

A. System Model

Consider a group of n computational entities R =
{r1, r2, · · · , rn}, namely robots, located on an Euclidean plane

R2. The robots are identical and have the capabilities of

localization, communication, and actuation. In detail,

• Each robot ri has a unique identifier, which is used for

comparison only.

• At an arbitrary given time t, each robot ri is aware of

its position and orientation lti = (xt
i, y

t
i , θ

t
i), where pti =

(xt
i, y

t
i) is the coordinate in the Cartesian space and θti

is the clockwise angle to the direction of the y-axis. All

the robots share a common Cartesian coordinate system.

• Each robot ri can communicate with, i.e., send and

receive messages to and from, all the robots in R.

• Each robot can move and rotate precisely in R2 with a

maximum linear velocity v and a maximum angular ve-

locity ω. The robots can dynamically choose a collision-

free path during movement.

In addition to the capabilities of each robot, the whole

system R forms a traditional message-passing system. We

assume that R is asynchronous with no failure. That is to say,

the procedure execution of each robot is not only completely

arbitrary but independent with the ones of the other robots as

well. In particular, there is no fixed upper bound on the time

it takes for a message to be delivered. Also, the robots are

always performing correct operations, and the communication

between the robots will not fail.

Definition 1. (Configuration) A configuration Ct =
{pt1, · · · , ptn} is the collection of positions of R at time t.
Here, we limit pti �= ptj for any i �= j.

In the beginning, R is in an arbitrary initial configuration,

and the robots in R orientate arbitrarily.

B. Problem Definition

Definition 2. (Sub-configuration) A sub-configuration St =
{pts1 , · · · , ptsk} is the collection of positions of a subset of R,
i.e., {rs1 , · · · , rsk}, at time t. Without loss of generality, we
assume that 1 ≤ s1 < s2 < · · · < sk ≤ n. Here, we limit
k ≥ 1 and ptsi �= ptsj for any i �= j.

Definition 3. (Basic Pattern Graph, BPG) A BPG B =
{(x1, y1), · · · , (xk, yk)} is a collection of non-overlapping
points in which x1 = 0, y1 = 0, and (xi, yi) ∈ R2 for all
1 ≤ i ≤ k. Here, we limit k ≥ 1. The center of B, notated as
O(B) is defined to be center of gravity of all the points in B,

i.e., O(B) = 1
k

k∑
i=1

(xi, yi).

(0,0)

1

(40,0)

2

(-25,-35)6 (65,-35) 3

(0,-70)

5

(40,-70)

4

(a) A BPG of hexagon

(0,0)

1

(-30,-30)

(0,-60)

2

3

4

(30,-30)

(b) A BPG of quadrangle

1

2

3

4

5

6

(0,0)

(-30,-20)

(-30,-50)

(0,-70)

(30,-50)

(30,-20)

(c) Another BPG of hexagon

1

3

2

45

6

7

(0,0)

(20,-10)(-20,-10)

(-30,-30) (30,-30)

(-15,-50) (15,-50)

(d) A BPG of heptagon

Fig. 3: Four examples of BPG

As shown in Fig. 3, BPGs can be used to represent basic

geometric patterns, e.g., hexagon, quadrangle, and heptagon.

Definition 4. (Relationship between sub-configuration and
BPG) Consider a sub-configuration St = {pts1 , · · · , ptsk1

}
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and a BPG B = {(x1, y1), · · · , (xk2
, yk2

)}. St is said to
be compatible with B at time t if and only if there exists
a vector v ∈ R2 such that ∀1 ≤ i ≤ k1, ∃1 ≤ j ≤
k2, p

t
si + v = (xj , yj). The center of St w.r.t. B is defined

to be O(St, B) = O(B)− v. If St is compatible with B, the
completion rate of St to B, notated as α(St, B) for short, is
defined to be k1/k2. Otherwise, we define α(St, B) to be 0.

It is evident that the completion rate must be a real number

between 0 (inclusive) and 1 (inclusive). The completion rate is

used to evaluate how good a subset of robots forms a specific

basic pattern. The larger the completion rate is, the better the

subset of robots forms the basic pattern.

Definition 5. (Relationship between sub-configuration and
configuration) A set of sub-configurations {St

1, S
t
2, · · · , St

k}
is said to be a partition of a configuration Ct at time t if and
only if St

1 ∪ St
2 ∪ · · · ∪St

k = Ct and St
i ∩ St

j = for any i �= j.
We notate all the partitions of Ct as T (Ct).

Definition 6. (Basic Pattern Fulfillment Ratio) The fulfillment
ratio, notated as β, of a partition {St

1, S
t
2, · · · , St

k} of a
configuration Ct to a BPG B is defined to be the average
of all the completion rates of St

i to B. That is:

β({St
1, S

t
2, · · · , St

k}, B) =
1

k

n∑

i=1

α(St
i , B) (1)

The basic pattern fulfillment ratio of a configuration Ct to a
BPG B, notated as γ(Ct, B) for short, is defined to be the
maximum value of the fulfillment ratios of all the partitions of
Ct. That is:

γ(Ct, B) = max
τ∈T (Ct)

β(τ,B) (2)

Here, the partition τ is called the optimal partition of Ct w.r.t.
B.

It is evident that the basic pattern fulfillment ratio must be

a real number between 0 (inclusive) and 1 (inclusive). Using

Eq. 2, we can evaluate how good the whole MRS forms a

specific kind of basic pattern. The larger the basic pattern

fulfillment ratio is, the better the MRS forms the basic pattern.

Using Def. 6, we can partition a MRS R into a collection of

basic patterns optimally. Now, we consider the centers of the

basic patterns and assemble them using assembling graph.

Definition 7. (Assembling Graph, AG) An AG A =
{(x1, y1), (x2, y2), · · · , (xk, yk)} is a collection of distinct
vectors, where (xi, yi) ∈ R2 for all 1 ≤ i ≤ k.

As shown in Fig. 4, AGs can be used to represent the assem-

bled patterns, e.g., square, triangle, rhombus and trapezoid.

Definition 8. (Assembling Fulfillment Ratio) Consider an
configuration Ct, a BPG B, and an optimal parti-
tion τ . We notate the centers of the sub-configurations
in τ as O = {o1, o2, · · · , ok}. Given an AG A =
{(x1, y1), (x2, y2), · · · , (xk, yk)}, we link oi with oj if and
only if oi + (xl, yl) = oj for some 1 ≤ l ≤ k. In this way, we

(0,0)

1

(-60,-60)

2 3

(60,-60)

(b) An AG of triangle(a) An AG of square

(0,0)

1

(140,0)

2

(0,-120)

3

(140,-120)

4

(c) An AG of rhombus

1

2

4

3

(0,0)

(-80,-80)

(0,-160)

(80,-80)

(d) An AG of trapezoid

3

2

4

6

7

(0,0) (90,0)

(40,-65)(-50,-65) (130,-65)

Fig. 4: Four examples of AG

get a graph of O, whose number of connected components is
notated as C. The assembling fulfillment ratio, notated as δ is
defined to be 1 by C. That is:

δ(τ, A) =
1

C (3)

Using Eq. 3, we can calculate the assembling fulfillment

ratio, which implies the quality of the assembled formation.

It is evident that the assembling fulfillment ratio is a real

number between 0 (exclusive) and 1 (inclusive). Ther higher

the assembling fulfillment ratio is, the better the MRS is

assembled as desired. Combining the basic pattern fulfillment

ratio and the assembling fulfillment ratio, we introduce the

metric formation quality to judge how good a MRS form

repeating patterns.

Definition 9. (Formation Quality) The formation quality,
notated as ε, is defined as the product of the basic pattern
fulfillment ratio and the assembling fulfillment ratio. That is,
for a configuration Ct, a BPG B, an optimal partition τ , and
a AG A,

ε(Ct, B, τ, A) = γ(Ct, B) · δ(τ, A) (4)

In Fig. 1, The four patterns are perfect (formation qualities

are 1) w.r.t. BPGs in Fig. 3 and AGs in Fig. 4.

Definition 10. (Repeating Pattern Formation Problem) Given
a MRS R, a BPG B, and an AG A, move the robots such that
the formation quality of R is maximized.

IV. A DECENTRALIZED ALGORITHM

Our algorithm is a decentralized algorithm executed on each

node independently. The whole process of the algorithm is

divided into two phases, namely basic pattern generation, and

pattern assembling respectively. In the phase of basic pattern

generation, the robots coordinate with each other to generate

a set of basic patterns according to the BPG. In the pattern
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assembling phase, the basic patterns are gradually assembled

with each other to form the final pattern according to the AG.

Next, we will describe the two phases in detail.

A. Basic pattern generation

In the phase of basic pattern generation, a group-based

method is used to divide the robots into groups with a

constrained number of members. The number of robots in a

group equals to the number of nodes in the BGP. When the

system starts to run, a robot is assigned to a new group if

it has not joined a group and owns the largest ID in the set

of unassigned robots. Then, the assigned robot adds several

neighbors to its group. The number of selected neighbors is

|BPG| − 1, that is the size of the BPG minus 1. Inside the

group, the robots are organized into the basic pattern according

to the input BGP. The robot with the largest ID is the head of

this pattern. The detailed operations for each robot to generate

basic patterns are shown in Alg. 1.

Algorithm 1 The basic pattern generation algorithm for each

robot ri
Input: R = {r1, · · · , rn}: the MRS; B: the BPG to form;

P = {p1, · · · , pn}: the positions of the robots

Output: several basic patterns are formed according to B

ri.head← False
Upon ri finds that it has the largest ID in R
ri.head← True
B′ ← B \ {(0, 0)}
m← |B′|
B′ ← B′ + pi 
 each element in B′ is added to a vector

pi
Select m nearest neighbors N = {rc1 , · · · , rcm} from R
R ← R \ N \ {ri}
Compute an assignment of robots in C to positions in B′

with minimum sum of distances

Notate the assignment result as {p′c1 , · · · , p′cm}
Send Group(R, (ri, pi), (rc1 , p

′
c1), · · · , (rcm , p′cm)) to all

its neighbors

Upon ri receives Group(R′, (rc1 , p
′
c1), · · · , (rcm , p′cm))

N = {rc1 , · · · , rcm}
If ri ∈ N

Find the record (ri, p
′
i) in the Group message

Move to p′i
Regard rc1 as its head and maintains relative position

to rc1
EndIf
R ← R′

In Alg. 1, letR represents the set of available robots that are

not assigned to form the basic pattern yet. When the system

starts, each node has the information of the set R. However,

each node does not know whether it can be a head or not at

this time, so the variable head is set as False in the beginning.

For each robot ri, if it finds that it has the largest ID in R,

it sets up a new group with itself to be the head. The head

is responsible for forming and maintaining the pattern. Then,

it selects |BPG| − 1 nearest neighbors from R and computes

a matching of these neighbors to the target positions in the

pattern with the minimum sum of moving distances.

The matching process is mapped to a problem of maximum

matching in a weighted bipartite graph. Inside the maximum

matching problem, the positions of the selected neighbors are

in one independent set of vertices, the target positions are in

the other set of vertices, and the weights are distances between

the selected neighbors and the target positions. The problem

can be optimally solved by using Hungarian algorithm [5].

When the matching process is finished in ri, it gets matching

result {p′c1 , · · · , p′cm}, where m is group size. Then, ri sends a

message Group(R, (ri, pi), (rc1 , p
′
c1), · · · , (rcm , p′cm)) to in-

form all the robots, where ri, rc1 , · · · , rcm are the assigned

robots, and pi, p
′
c1 , · · · , p′cm are the target positions where the

assigned robots should go.

When a robot ri receives a message

Group(R′, (rc1 , p
′
c1), · · · , (rcm , p′cm)), it checks whether

its ID is contained in the message. If true, i.e., a record

(ri, p
′
i) is found in the message, it means that ri has been

assigned a target position by robot rc1 . Therefore, ri moves

to the assigned position p′i. After reaching the position, ri
regards rc1 as its head and maintains the relative position

w.r.t. rc1 . If false, it does not perform the above operations.

Whatever ri’s ID is in the message or not, it will update the

set R as R′ contained in the message.

When Alg. 1 terminates, i.e., A = ∅ and all the robots

have reached the assigned positions, several basic patterns are

generated. Inside each group of a basic pattern, the non-head

robots will follow the head’s action to maintain the pattern.

Therefore, we only need to consider the head’s movement in

the second phase.

B. Pattern assembling

After the first phase, there are multiple basic patterns in the

working area. In the second phase, i.e., the phase of pattern

assembling, a layer-based mechanism is proposed to assemble

the basic patterns. The basic patterns form a tree structure

layer by layer according to the input AG.

Firstly, a head with the largest ID in the system is selected as

the root in the formation. The root is the first layer. Secondly,

the root selects a given number of nearest heads, which are

not in the formation, as its children. The number is decided

by the input AG. Thirdly, it computes a maximum matching

for the selected heads to target positions according to the AG.

Fourthly, the selected heads move to the assigned positions;

then the second layer is formed. After the selected heads arrive

their positions, they continue to select other heads that are not

in the formation to join the tree and form a new layer of the

formation. Above process continues until the final pattern is

generated. A detailed description of the above operations is

shown in Alg. 2.

In Alg. 2, let H be the set of unassigned heads in the

system, and let Q be a queue to control the assigned heads

to perform their assignment operations one by one to avoid

collision, i.e., more than one heads are assigned to the same

598

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:22:42 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2 The assembling algorithm for each robot ri

Input: H = {h1, · · · , hm}: the head of the basic pat-

terns; R =
m

max
i=1

H: the maximum robot ID in H; P =

{p1, · · · , pm}: the positions of the heads; A: the input AG

Output: The repeating pattern is formed

Q ← {R} 
 Q is as a queue of assigned leaf robots

O ← ∅ 
 O is a set of assigned heads

Upon ri finds that it is the first element in Q
A′ = A\{(0, 0)}\O
l← |A′|
A′ ← A′ + pi 
 each element in A′ is added to a vector

p′

Select l nearest neighbors E = {rc1 , · · · , rcl} from H
Compute an optimal matching between E and A′ with

minimum sum of distances

Notate the matching result as {p′c1 , · · · , p′cl}
Sort the robots in E according to the node IDs in

ascending order

H = H\E\{ri}
Q = Q ∪ E ∪ {ri}
Send Layer(H,Q, (ri, pi), (rc1 , p′c1), · · · , p′cl) to all its

neighbors

Upon ri receives a message
Layer(H′,Q′, (rc1 , p

′
c1), · · · , (rcl , p′cl))

N ← {rc1 , · · · , rcl}
If ri ∈ N

Find the record (ri, p
′
i) in the message

Move to p′i
EndIf
O ← O ∪N
H ← H′

Q ← Q′

position. Here, the unassigned heads are the heads that have

not assigned target positions in the desired formation and vice

versa. At first, H contains all the heads in the system, and Q
just contains the robot with the largest ID in H. Each robot

has the initial information of H and Q.

If a robot ri finds that it is the first element in Q, it takes its

role as the first node in the input AG. Then, it checks which

target positions in the AG are not occupied by other robots.

In our algorithm, an array O is used to record the positions

have been occupied. If a target position is not occupied, it

needs to be assigned a robot. Next, ri computes an assignment

(maximum matching) of neighboring unassigned heads to the

unoccupied target positions.

After the assignment is finished, these neighboring heads

become assigned heads, so they are removed from H . More-

over, they are added to Q to wait for generating the next layer

of the formation. Then, ri sends a Layer message contains

the assignment result and the current values of H and Q to

other robots in the system.

When a robot rj receives the Layer message, it firstly

checks if its ID is contained in the message. Then, it moves

to the target position according to the new coordinates. If

the result of the checking is false, it does not perform above

operations. Whatever a robot rj’s ID is contained in the Layer
message or not, the H and Q values are updated by using the

new values of H and Q contained in the Layer message.

V. SIMULATION AND REAL-WORLD DEPLOYMENT

To evaluate the performance of our algorithm, we conduct

sufficient experiments in this section. In Sec.V-A, we compare

our algorithm with the existing works in a Matlab simulator.

In Sec.V-B, we deploy our algorithm in a real-world testbed

in our laboratory. The experimental results have indicated the

effectiveness and practicability of our algorithm.

A. Simulation

We use a simulator implemented by Matlab to evaluate our

algorithm and existing works. We compare our algorithm with

Song’s algorithm [16], since it is the only approach has the

same feature with our algorithm (i.e., it is also a decentralized

and general approach for generating formation with arbitrary

repeating pattern). The four types of formations shown in

Fig. 1 are selected as desired formations. For each desired

formation Fd, |Fd| robots are placed randomly and uniformly

in the working plane. The robots can move without colliding

with other robots in a constant speed of 10 cm/s. Two metrics,

namely formation quality and total movement distance are

selected to evaluate the algorithms.

To provide a visualized comparison, we firstly execute our

algorithm and Song’s algorithm to generate the four formations

in Fig. 1 respectively. The working area of the system is set

as a square of 10m× 10m. The formations generated by our

algorithm are shown in Fig. 5, and the formations produced

by Song’s algorithm are shown in Fig. 6.
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Fig. 5: Formations generated by our algorithm

We can see that our algorithm can generate the four for-

mations accurately, but Song’s algorithm cannot achieve the

desired formations. That is because Song’s algorithm uses a
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lattice graph to represent robot’s relative positions in each

formation, but the lattice graph cannot reflect the shape of the

formation. In our algorithm, we use not only a basic pattern

graph to represent robots’ relative positions in a pattern, but

also an assembling graph to describe how can the patterns

be assembled to generate the desired formation. Based on

the two graphs, our algorithm firstly organizes the robots into

basic patterns and then organizes the patterns to assemble with

each other to generate the desired formation. Therefore, our

algorithm can guarantee the shape of the generated formations.
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Fig. 6: Formations generated by Song’s algorithm

Then, we formally evaluate the average performances of the

algorithms. We perform the two algorithms to generate the four

types of formations shown in Fig. 1 in different scales of MRS.

To accommodate more robots, we extend the working area of

the system to a square of 15m× 15m. We set the number of

robots ranging from 50 to 300 with steps of 50. Then, the two

algorithms are executed 20 time respectively, and the average

values of the performances are calculated.

We first test the average formation qualities of the two

algorithms. To make the generated formation and the desired

formation comparable, we select the leftmost point in the first

line of each formation as the origin of a local coordinate

system. All the other points’ coordinates can be computed by

using the local coordinate system. By this way, the coordinate

systems of the two formations become the same. The for-

mation quality can be obtained by calculating the percentage

of points that locate in both the generated formation and the

desired formation. The comparison result is shown in Fig. 7a.

We can see that our algorithm can achieve the formation

quality of 1, no matter how many the number of robots in the

systems. However, the Song’s algorithm can only achieve the

formation quality of 0.92 to 0.96 in the systems. Therefore, our

algorithm has a better formation quality than Song’s algorithm.

The total movement distances of the two algorithms are

shown in Fig. 7b. We can see that our algorithm has shorter

total movement distances than that of the Song’s algorithm. In
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Fig. 7: Comparison between our algorithm and existing work

a system with 50 robots, our algorithm can achieve an average

total movement distance of around 212cm, but the total move-

ment distance of Song’s algorithm is around 299m. In this

situation, our algorithm’s total movement distance is 28.8%
lower than that of the Song’s algorithm. In a system with 300
robots, our algorithm can achieve an average total movement

distance of around 1334m, but the total movement distance

of Song’s algorithm is around 1820m. In this situation, our

algorithm’s total movement distance is 26.7% lower than that

of the Song’s algorithm. Therefore, in different scale systems,

our algorithm achieves shorter total movement distance than

Song’s algorithm.

B. Real-world Deployment
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Fig. 8: Experiment Setup

To demonstrate the practicability of the proposed algorithm

in Sec. IV, we deploy a realistic 2m × 3m testbed with ten

intelligent robots. The robots as shown in Fig. 8(a), namely

PiBots (The Hong Kong Polytechnic University Intelligent

Robot) [17], are designed in our laboratory. All the robots are

in the same shape of a cylinder with radius 7cm and height

18cm. The structure of a PiBot is illustrated in Fig. 8(c). The

whole robot is composed of four parts. From the bottom to
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the top, the four components are the wheels, the bottom board,

the power management unit, and the top board respectively.

The wheels are linked with the motor drivers on the bottom

board. By linkage, the motors can get and set the rotating

speeds of the wheels. There are also eight infra-red sensors

around the bottom board, which are responsible for detecting

the surrounding objects. The data from the motors and the

infra-red sensors are stored and processed in the MCU (micro-

controller). The bottom board are connected with the top board

using an SPI (Serial Peripheral Interface) bus to achieve data

transmission. On the top board, there are plentiful sensors

such as an ultrasonic receiver, a 3-axis accelerator sensor, a

3-axis gyroscope, and a 3-axis geomagnetic sensor. Besides

the sensors, there is a 2.4G wireless communication unit.

The wireless communication unit uses IEEE 802.15.4 as its

protocol to enable inter-robot communication. There is also a

MCU to store and process data on the top board. The MCUs

on the top and bottom board are of STM32 family with 8M

static random access memory (SRAM) or 512K flash memory.

Equipped with the sensors, each robot can localize itself on

the testbed with assist of two beacons as shown in Fig. 8(b).

The localization mechanism is illustrated in Fig. 8(d). Each

beacon is composed of a 2.4 G wireless communication mod-

ule, an STM32 MCU, an ultrasonic transmitter, a temperature

sensor, and a battery. Every one tenth second, the primary

beacon will send out a packet of radio signal via the wireless

communication module and a packet of ultrasonic signal via

the ultrasonic transmitter. When the secondary beacon receives

a radio signal from the primary beacon, it will send out a

radio signal and a ultrasonic signal with the same packet

number. Due to the different propagation speeds of the radio

signal and the ultrasonic signal, the robot will receive them

at different time. Specifically, each robot can calculate the

distance between itself and the two beacons using the principle

of TDoA (Time Difference of Arrival). After calculating the

two distances, the robots can localize themselves on a half

plane. Since the two beacons are on the same side of the

testbed, each robot can acquire the only possible location on

the testbed. Moreover, we consider the different ultrasonic

velocities under different temperatures with a temperature

sensor to achieve a more precise positioning system.

The programming environment is based on FreeRTOS,

a popular real-time operating system kernel for embedded

devices. In FreeRTOS, a set of tasks (similar to threads in

operating systems) are defined with priorities to be executed

concurrently. This kind of task-based operating system fits in

distributed system naturally [18]. For each Upon statement in

the algorithm, we create a corresponding task. We testify three

repeating patterns on our test-bed, namely a square formation

of repeating dots, a triangle formation of repeating segments,

and a rhombus formation of repeating triangles. A set of

running result is demonstrated in Fig. 2.

VI. CONCLUSION

In this paper, we studied the problem of repeating pattern

formation in MRS. Existing works have some drawbacks

such as lacking generalization or cannot guarantee the shapes

of the generated formations. We proposed a decentralized

algorithm for generating arbitrary repeating patterns. Some

key concepts are introduced to define repeating patterns and

the formation quality for measurement. We implement our

algorithm in a Matlab simulator and a real-world testbed.

The simulation result shows that our algorithm outperforms

the existing works. The real-world deployment indicates the

practicability of our approach.
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